05毕业设计论文.doc

直驱波浪发电系统电能后处理电路的设计【说明书论文开题报告外文翻译】

收藏

压缩包内文档预览:

资源预览需要最新版本的Flash Player支持。
您尚未安装或版本过低,建议您

直驱波浪发电系统电能后处理电路的设计【说明书论文开题报告外文翻译】,波浪,发电,系统,电能,处理,电路,设计,说明书,仿单,论文,开题,报告,讲演,呈文,外文,翻译
编号:10276639    类型:共享资源    大小:506.32KB    格式:ZIP    上传时间:2018-07-09 上传人:小*** IP属地:福建
50
积分
关 键 词:
波浪 发电 系统 电能 处理 电路 设计 说明书 仿单 论文 开题 报告 讲演 呈文 外文 翻译
资源描述:
直驱波浪发电系统电能后处理电路的设计【说明书论文开题报告外文翻译】,波浪,发电,系统,电能,处理,电路,设计,说明书,仿单,论文,开题,报告,讲演,呈文,外文,翻译
内容简介:
毕 业 设 计(论 文)任 务 书1本毕业设计(论文)课题应达到的目的:通过本课题的设计,使学生得到如下几个方面的锻炼:1. 锻炼调查研究中、外文献检索与阅读的能力。2. 掌握波浪发电系统电能后处理电路的基本原理,并能将理论知识综合运用,分析解决实际问题的能力。3. 具有进行相关课题的设计、计算、仿真的能力。4. 具有使用计算机相关软件进行计算、仿真、绘图的能力。5、具有撰写设计说明书和口头表述的能力。2本毕业设计(论文)课题任务的内容和要求(包括原始数据、技术要求、工作要求等):1.本课题研究波浪发电系统电能后处理电路研制过程。要求完成如下工作:(1) 收集和查阅相关波浪发电系统电能后处理电路的相关资料;(2) 掌握电能后处理电路的研制方法和步骤;(3) 电路特性的仿真和调试;2.按时完成开题报告、外文资料翻译、设计大纲。3.在设计过程中要有严谨、科学、求实的工作态度,按要求设计合理方案,尊重客观事实,设计中要体现可行性、客观性、真实性、创新性。4.按时参加答辩,在答辩前各项规定的资料要齐全。 毕 业 设 计(论 文)任 务 书3对本毕业设计(论文)课题成果的要求包括图表、实物等硬件要求: 1.完成一篇符合金陵科技学院论文规范的毕业设计说明书。2.完成对电能后处理电路原理、设计仿真系统图及完成有关计算。3.完成电能后处理电路的设计和研制详细的步骤说明。4.要求设计电路仿真和调试成功,并在答辩时完成电路的展示。4主要参考文献: 1 陈世坤.电机设计M.北京:机械工业出版社.2000,264277 2 于宗焕 .我国风力发电现状与趋势 J .农村电气化 ,1999, (1):27 28 风力发电机的设计及风力发电系统的研究 3张素霞.国内外风力发电现状及发展趋势J.大众用电,2007, (5):20-22. 4赵群,王永泉,李辉.世界风力发电状况与发展趋势J.机电工 程,2006,23(2):6-18. 5薛玉石,韩力,李辉.直驱永磁同步风力发电机组研究现状与发 展前景J.电机与控制应用,2008,35(4):1-5,21. 6胡书举,李建林,许洪华. 永磁直驱风电系统变流器拓扑分析J. 电力自动化设备,2008,28(4):77-81. 7孙建锋.风电场建模和仿真研究D.北京:清华大学,2004.毕 业 设 计(论 文)任 务 书5本毕业设计(论文)课题工作进度计划:起 迄 日 期 工 作 内 容2015.11.04-2015.11.282015.11.29-2015.12.162015.12.17-2016.01.102016.02.25-2016.03.092016.03.09-2016.04.282016.04.29-2016.05.092016.05.09-2016.05.132016.05.14-2016.05.21在毕业设计管理系统里选题与指导教师共同确定毕业设计课题查阅指导教师下发的任务书,准备开题报告提交开题报告、外文参考资料及译文、论文大纲进行毕业设计(论文) ,填写中期检查表,提交论文草稿等按照要求完成论文或设计说明书等材料,提交论文定稿教师评阅学生毕业设计;学生准备毕业设计答辩参加毕业设计答辩,整理各项毕业设计材料并归档所在专业审查意见:通过 负责人: 2016 年 1 月 14 日 毕 业 设 计(论文) 开 题 报 告 1结合毕业设计(论文)课题情况,根据所查阅的文献资料,每人撰写不少于1000 字左右的文献综述: 人类对能源的需求与日俱增,造成能源消耗直线上升,尤其是传统的石油、天然气和煤炭等资源日益枯竭,各国争先发展新能源事业。作为新能源的一种,海洋能(潮汐能、波浪能、温差能)得到广泛关注和研究。海洋波浪能是一种取之不尽、用之不竭的清洁可再生能源。虽然大规模波浪能发电的成本还难与常规能源发电竞争,但特殊用途的小功率波浪能发电,已在导航灯浮标、灯桩、灯塔等上获得推广应用。在边远海岛,小型波浪能发电已可与柴油发电机组发电竞争,为海岛居民提供电力。近年来,世界各国都制定了开发海洋能源的规划。我国也制定了波浪发电以福建、广东、海南和山东沿岸为主的发展目标。着重研制建设 100kw 以上的岸式波力发电站。因此波浪发电的前景是十分广阔的。我国波浪能发电技术研究始于 20 世纪 70 年代,从 20 世纪 80 年代初开始对固定式和漂浮式波能装置进行基础研究。1985 年我国一些机构成功开发利用对称翼透平的波浪发电的航标灯,经过十多年的发展,已有 10450W 的多种型号产品。1990 年装机容量 3kW 的珠海市大万山岛电站试发电成功,其后我国又先后建成了 20kW 岸式波浪电站、8kW 摆式波浪电站和 5kW 后弯管漂浮式波浪发电装置、100kW 岸式振荡水柱电站、30kW 摆式波浪电站,均已试发电成功。早期研究的波浪发电系统采用旋转电机作为能量转换器,由于需要气缸、齿轮等中间转换装置,将往复运动的波浪能转换为机械能,然后在转换成电能,其具有结构复杂、难以维护等缺点,且效率相对低下。而直驱波浪发电技术是利用直线发电机将波浪能直接转换成电能的一种发电技术,因省去了中间能量转换装置使波浪能与电能之间的转化效率明显提升,且具有结构简单、易于维护等优点。对波浪发电装置而言,将波浪能转化为电能是其基本的功能,而如何将转化后的电能进行后处理,包括整流滤波、储存、逆变、传输和供给负载等,则是其要解决的另一个课题。文献1 基于直线电机的海浪发电技术可以高效地将海浪的机械能转化为电能,为了提高海浪发电系统输出电能质量,设计了高效、可靠、低成本的正弦波逆变器。主电路由推挽升压变换器和单相逆变桥组成,采用高频变压器实现电压比调整,减小了工频变压器体积,提高了效率、减小了输出电压纹波。逆变器功率开关管采用了 RCD 缓冲电路,确保逆变桥安全工作。控制部分采用集成脉宽调制芯片 SG3525 和正弦函数发生芯片 TDS2285实现双极性正弦波脉宽调制(SPWM),简单可靠、易于调试。实验结果表明输出电压波在复杂的工况下实现了 220W/50Hz 的市电输出,效率达到 87。鉴于以上综述,本设计将计划采用升压、整流滤波、电压比较、逆变、逻辑控制等电路来实现对电能的后处理,使之效率能够有所提高,运用场所更加广泛。参考文献: 1 洪立玮,余海涛.波浪发电后处理模块设计会议论文. 2012. 2 刘凤君.正弦波逆变器M.北京:科学出版社,2002. 3 王兆安.电力电子技术M.第四版.北京:机械工业出版社,2001. 4 刘京南.电子电路基础M.南京:2009. 5 沈锦飞.电源变换应用技术M.一北京:机械工业出版社, 2007. 6 周志敏.逆变器新技术与工程应用实例M.一北京:中国电力出版社,2014. 7 曲学基.电力电子整流技术及应用M.一北京:电子工业出版社,2008. 8 刘凤君.现代逆变技术及应用M.一北京:电子工业出版社,2006. 9 张艺东.SPWM 逆变器调制方式的研究J.应用技术,2011(5). 10 张振,肖阳,谌瑾.基于直线电机的波浪能发电系统综述J.船电技术.2010. 11 叶云岳.直线电机原理与应用M.北京:机械工业出版社,2005. 12 林渭勋.现代电力电子技术M.北京:机械工业出版社,2006. 13 曹乃峰,陈世哲,刘世萱.浮标气象站上的光伏供电系统设计J.山东科技,2010. 14 陈道炼.DC-AC 逆变技术及其应用M.北京:机械工业出版社,2001. 15 王冰.风力发电系统中正弦波逆变器的研究与实现D.内蒙古:内蒙古工业大学,2009. 毕 业 设 计(论文) 开 题 报 告 2本课题要研究或解决的问题和拟采用的研究手段(途径): 本课题要研究或解决的问题是: 1.如何对系统的硬件设备进行选择,如何对硬件电路进行研究规划; 2.在一定的基础上,如何进行软件编程及如何提高电能的转换效率; 3.在完成上述两个步骤后,还需要考虑怎样设计出整体的电路原理图。 研究手段(途径): 1.去图书馆查阅相关资料,经过汇总,作为参考资料; 2.充分利用网络资源,进行相关信息的搜索; 3.针对此课题相关方面的研究咨询指导老师; 4.理论联系实际,通过动手实际操作进行模拟仿真。 毕 业 设 计(论文) 开 题 报 告 指导教师意见:1对“文献综述”的评语:该生能对该课题专业方向的文献进行较为全面的查阅和认真的归纳,能够体现当先的现状和发展意义,具有一定的可参考性。2对本课题的深度、广度及工作量的意见和对设计(论文)结果的预测:该课题具有一定的理论基础和工程应用价值,对储能技术的发展具有一定的参考价值,工作量合适,在一定的研究与仿真的工作下完成毕业任务书的相关要求。 3.是否同意开题: 同意 不同意指导教师: 2016 年 03 月 03 日所在专业审查意见:同意 负责人: 2016 年 03 月 08 日0译文题目: Research on Energy Conversion System of Floating Wave Energy Converter浮动式波能转换器能量转换系统的研究 Research on Energy Conversion System of Floating Wave Energy ConverterABSTRACTA wave power device includes an energy harvesting system and a power take-off system. The power take-off system of a floating wave energy device is the key that converts wave energy into other forms. A set of hydraulic power take-off system, which suits for the floating wave energy devices, includes hydraulic system and power generation system. The hydraulic control system uses a special “self-hydraulic control system” to control hydraulic system to release or save energy under the maximum and the minimum pressures. The maximum pressure is enhanced to 23 MPa, the minimum to 9 MPa. Quite a few experiments show that the recent hydraulic system is evidently improved in efficiency and reliability than our previous one, that is expected to be great significant in the research and development of our prototype about wave energy conversion.Key words: hydraulic power take-off system (PTO); second transfers; conversion efficiency; hydraulic control1. IntroductionA wave energy converter (WEC) can be divided into two parts: the first part is a power take-off (PTO) system, which converts wave energy into reciprocating mechanical energy (named the first order conversion); the second part is a energy 1conversion system and its purpose is to transfer the reciprocating mechanical energy into electric energy or other forms of energy (named the second order conversion).Now generally, there are so many WECs adopting the hydraulic energy conversion system in the world (Facao, 2008), such as, Nod Duck of United Kingdom (Salter, 1974), and Pleamis (Henderson,2006), and McCabe Wave Pump (Minerals Management Service, Renewable Energy and Alternate Use Program, U.S. Department of Interior, 2006), and Oyster (Davis, 2010), Float Power Buoy of United States (Ocean Power Technologies, Inc., 2013), and so on. Many WECs in China have been built: two Flap-type devices of 8 kW and 30 kW (Yang et al., 2000), OB of 50 kW (You et al., 2006), and 10 kW Duck WEC (Zheng et al., 2008). There are a plenty of WECs under building, 100 kW Flap-type and 100 kW Duck.Hydraulic energy conversion system is particularly suitable to convert energy from the very large forces or moments applied by the waves on slowly WECs, and to eliminate negative effects of waves on WECs. It is because of hydraulic energy conversion system with very perfect performance (Yi et al.,1997; Whittaker, 1997; Wang, 1989). (1) Small inertia. The smaller the inertia is, the better the hydraulic cylinder piston motion follows. It does not affect the motion of the wave energy capture system. (2) It is easy to control damping through the valves. (3) High conversion efficiency. (4) Without speed-up institutions. (5) Steady output. (6) Low cost. The first three advantages improve the total efficiency of a WEC, and the latter three advantages enhance the reliability and stability of a WEC, thus reduce the cost.Hydraulic energy conversion system has been applied in WECs at home and abroad, but there are seldom references describing in detail about it. In this paper, floating duck WEC is used for illustrative purpose to introduce the research on the system. Besides, the following work has been done:introducing structure and principle of the hydraulic energy conversion system, proposing to increase the system pressure to obtain high efficient, verifying the feasibility of the scheme through experimental analysis. All of the above provide guidance for further study.2. System Configuration2The energy conversion system of floating Duck WEC consists of hydraulic cylinder, pressuremaintaining energy storage system, hydraulic motors, generators, fuel tanks, filters, valves, and control system, as shown in Fig. 1, block diagram shown in Fig. 2. Its principle is that wave promotes Duck and drives hydraulic cylinders. The motion of hydraulic cylinders obtains hydraulic energy from wave energy, then to drive hydraulic motors and generator, to gain electric energy. Owing to the unstable wave, the pressure of the energy conversion system is always fluctuating, which not only affects the quality of power generation, but also easily breaks system (such as generator overload or mechanical failure), and reduces efficiency when wave energy stream flow is too small. A pressure-maintaining energy storage system is set to overcome this problem. When encountering huge wave, the system adopts all unsteady waves and keep output steady. Those could make smooth fluctuations of hydraulic power and pressure, and improve reliability of system, conversion efficiency, and power stability.While in the condition of small wave, the system stores all small stream flow hydraulic energy, and emits high pressure oil with high-power, to realize 01 power generation and avoid the power being too small to drop conversion efficiency. In fact, a WEC often gains smaller than 20% installed capacity in small waves, so that the generator is almost impossible to work. A WEC realizes continuous generating power by use of the pressure-maintaining energy storage system, which is an effective means to improve efficiency.In order to achieve the above-mentioned 01 power generation, we developed a “hydraulic self-control system”. According to the principle of hydraulic balance, the system turns on or off the main valve. The system is composed of a nitrogen accumulator and a hydraulic cylinder. The rod-chamber of hydraulic cylinder connects to the nitrogen accumulator, and the other part to the pressure-maintaining energy storage system. When the pressure of the pressure-maintaining energy storage system increases, the hydraulic cylinder piston moves to the non-rod chamber, othewise, the piston to the rod chamber. Therefore, the position of the piston corresponds to the pressure of the pressure-maintaining energy storage system one by one. When the pressure-maintaining energy storage system releases all high pressure 3oil, its pressure reaches the minimum value pmin . On the other hand,when the system stores oil as much as it can, the pressure reaches the maximum value pmax . Through experiments, the positions of the piston (standing for pmin and pmax ) could test, and limit switches who charge for turning on or off the valve are set. When the limit switch for opening the valve is operated, the main valve is closed, and the motor stops turning. But when the limit switch for closing the valve is operated, everything is contrary, so 01 power generation achieves.Those mentioned above are also applied to huge waves “continuous power generation”. When meeting huge waves, the pressure of the pressure-maintaining energy storage system mostly wanders between pmin and pmax . The displacement of the hydraulic motor automatically follows the pressure above to change. Coupled with the function of the pressure-maintaining energy storage system, the energy conversion system could automatically realize continuous power generation as long as wave energy reaches some value. Once in a while even if the pressure reaches pmin, the system stops working. But the pressure will soon rise back to pmax, and the valve is opened again.43. Experimental ConfigurationIn order to calculate the efficiency of the energy conversion system, test all parameters of the system, and monitor the status of important aspects of the system, twelve sensors are set to measure the stream flow, pressure, speed, voltage, current, and so on.Some parameters of the energy conversion system are as follows: generator, rated power 15 kW,rated speed 1500 r/min; hydraulic motor rated discharge capacity 32 ml/r; the pressure-maintaining energy storage system , pmin =9.0 MPa, pmax =23 MPa; range of the load, 3878.3.1 Parameter MeasuredSoftware for data acquisition and processing is compiled in C language.Pressure: measurement range, 01 MPa, 02 MPa, 015 MPa, 035 MPa; output current signal 420 mA.Stream flow: measurement range, 0.78 m3/h; output, current signal 420 mA.Voltage: measurement range, 0500 V; output, current signal 0100 mA.Current: measurement range, 050 A; output, current signal 050 mA.Speed: output, pulse count signal.3.2 Test MethodIn laboratory, hydraulic cylinders are replaced by hydraulic pumps. That motor is controlled by transducers on different frequency driving hydraulic pump to do reciprocating motion, and mimic the WEC capturing intermittent unstable wave energy. Hydraulic pumps keep pressing hydraulic oil to the pressure-maintaining energy storage system until its pressure reaches 23 MPa. At this time, the hydraulic self-control system opens the main valve, and the hydraulic motor drives the 5generator to start power generation, and the power is consumed by load. When the pressure drops below 9.0 MPa,the hydraulic self-control system closes the main valve, so the pressure-maintaining energy storage system stops releasing hydraulic oil.Energy contained in the released hydraulic oil can be calculated by the following formula: where Ein is the energy contained in hydraulic oil; pi and Qi represent the i-th pressure and volume stream flow of the pressure-maintaining energy storage system, respectively; t is the interval time between two collection data.Generator power:where Eout is the output power of the generator; Ui is the i-th DC voltage from the rectified output voltage of the generator; Ii is the i-th output current of the generator.The efficiency of the energy conversion system is:Where represents the efficiency of the energy conversion system.4. Experimental Analyses4.1 ResultsFrequency of the inverter is set as f=20 Hz, and the frequency of data collection is f=20 Hz. The resistor load is R=38.Figs. 3a3d show the pressure of the pressure-maintaining energy storage system, the stream flow,the voltage, and the current of two work cycles, respectively. The range of the pressure is pmin_ 2011=8.0 MPa , pmax _ 2011=22.5 MPa . The corresponding range of the pressure of the nitrogen accumulator is 6.713.7 MPa. The range of the stream flow pressure-maintaining energy storage system is 1.862.5 m3 /h . DC voltage output of the generator changes between 361.46 V and 527 V,and the current 6output is between 8.9 A and 13.3 A.4.2 Experimental CalculationIn Fig.3, curves record the two work processes about 18844 data. The generator continues to work for 123 s every time. The curves show 4 pulses. The second and the fourth record hydraulic oil released process, and the first and the third are due to mechanical problems making the main valve opened.According to Eq. (1), energy contained in the hydraulic oil:According to Eq. (2), the electric power produced by the generator isAccording to Eq. (3), the efficiency of energy conversion systems:Where 2011 is the experimental efficiency (subscript for the trial time).4.3 Compared TestThe similar test has been done in 2009. In the early test, the pressure range is 7pmin_ 2009 =4.0 MPa ,p max_ 2009=6.0 MPa , and the load is R=33. Fig. 4a shows the current output data, and Fig. 4b shows the voltage output data of the test in 2009.Based on the data statistics, the electric power produced by the generator is Eout =126675 J , and the energy contained in hydraulic oil generating work is Ein= 259677.518 J . For the test in 2009, the total efficiency of the energy conversion system is:where 2009 is the efficiency of the energy conversion system in the test in 2009.Fig. 4 shows that the generator could keep working for 42 s each time, and there are spikes of voltage and current, and the range of voltage is 300380 V, and the current is 8.512 A.4.4 Experimental AnalysesIn comparison of the two experiments, the efficiency of 2011 test is as high as 86.35%, which increases 37.57% as compared with that of 2009 test being 48.78%. Between the two tests, resistances and range change of the systems pressure are all different. Except for fine distinctions in the resistance,the prominent range change of pressure brings the stronger influence on the systems efficiency, which is from 4.06.0 MPa, up to 8.022.5 MPa. Relationship of the two experimental pressures is:Pipe power calculation formula:8It assumes that the two experiments achieve the same output power, and we can obtain:When the hydraulic oil tracks pipe, frictional pressure loss formula is:where kp and kQ are ratios of the system pressure, the power and the volume stream flow in two tests; p is the pressure of pipe, also the pressure
温馨提示:
1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
2: 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
3.本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
提示  人人文库网所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
关于本文
本文标题:直驱波浪发电系统电能后处理电路的设计【说明书论文开题报告外文翻译】
链接地址:https://www.renrendoc.com/p-10276639.html

官方联系方式

2:不支持迅雷下载,请使用浏览器下载   
3:不支持QQ浏览器下载,请用其他浏览器   
4:下载后的文档和图纸-无水印   
5:文档经过压缩,下载后原文更清晰   
关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

网站客服QQ:2881952447     

copyright@ 2020-2025  renrendoc.com 人人文库版权所有   联系电话:400-852-1180

备案号:蜀ICP备2022000484号-2       经营许可证: 川B2-20220663       公网安备川公网安备: 51019002004831号

本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知人人文库网,我们立即给予删除!