05毕业设计论文.doc

智能电力巡检定位仪的设计【说明书论文开题报告外文翻译】

收藏

压缩包内文档预览:(预览前20页/共56页)
预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图
编号:10276644    类型:共享资源    大小:13.74MB    格式:ZIP    上传时间:2018-07-09 上传人:小*** IP属地:福建
50
积分
关 键 词:
智能 电力 巡检 定位 设计 说明书 仿单 论文 开题 报告 讲演 呈文 外文 翻译
资源描述:
智能电力巡检定位仪的设计【说明书论文开题报告外文翻译】,智能,电力,巡检,定位,设计,说明书,仿单,论文,开题,报告,讲演,呈文,外文,翻译
内容简介:
毕 业 设 计(论 文)任 务 书1本毕业设计(论文)课题应达到的目的:通过毕业设计,使学生受到电气工程师所必备的综合训练,在不同程度上提高各种设计及应用能力,具体包括以下几方面:1. 调查研究、中外文献检索与阅读的能力。2. 综合运用专业理论、知识分析解决实际问题的能力。3. 定性与定量相结合的独立研究与论证的能力。4. 实验方案的制定、仪器设备的选用、调试及实验数据的测试、采集与分析处理的能力。5. 设计、计算与绘图的能力,包括使用计算机的能力。6. 逻辑思维与形象思维相结合的文字及口头表达的能力。 2本毕业设计(论文)课题任务的内容和要求(包括原始数据、技术要求、工作要求等):1.本 课 题 要 求 利 用 单 片 机 、 LCD 液 晶 显 示 屏 以 及 GPS-OEM 板 设 计 出 一 种 可 以 用于 电 力 巡 检 的 定 位 信 息 显 示 器 , 可 以 通 过 其 了 解 到 杆 塔 的 三 维 坐 标 及 相 关 时 间信 息 , 方 便 巡 检 人 员 对 杆 塔 进 行 巡 查 和 检 修 , 减 少 因 为 时 间 浪 费 导 致 的 经 济 损失 和 安 全 事 故 的 发 生 。 本 设 计 中 的 杆 塔 的 定 位 信 息 由 GPS-OEM 板 通 过 RS-232串 行 通 信 接 口 传 送 给 单 片 机 进 行 处 理 , 通 过 键 盘 选 择 需 要 的 信 息 , 然 后 单 片 机把 所 需 要 显 示 的 内 容 传 送 给 LCD 液 晶 显 示 屏 , 在 液 晶 屏 上 显 示 , LCD 液 晶 显示 屏 采 用 定 时 刷 新 , 以 便 提 供 最 准 确 最 可 靠 的 信 息 给 使 用 人 员 。 GPS-OEM 板的 设 置 用 预 留 的 RS-232 口 , 在 计 算 机 上 用 GARMIN 公 司 提 供 的 软 件 ( GARMIN Sensor/Smart Antenna Software) 来 对 其 进 行 设 置 。2.设计系统的硬件电路和软件程序,包括详细的硬件设备配置,系统连接,程序调试等详细步骤;3.最终完成一篇符合金陵科技学院毕业论文规范的系统技术文档,包括各类技术资料,电路图纸,程序等;4.系统要有实际的硬件展示,并能够通电运行;5.本子系统要与整个系统能够配合运行;6.能够完成各项任务,参加最后的毕业设计答辩。 毕 业 设 计(论 文)任 务 书3对本毕业设计(论文)课题成果的要求包括图表、实物等硬件要求: 1.按期完成一篇符合金陵科技学院论文规范的毕业设计说明书(毕业论文) ,能详细说明设计步骤和思路;2.能有结构完整,合理可靠的技术方案;3.能有相应的电气部分硬件电路设计说明;4.有相应的图纸和技术参数说明;5.要求定位仪能够调试成功,并在答辩时完成实际系统展示。 4主要参考文献: 1 楼 然 苗 ,李 光 飞 .单 片 机 课 程 设 计 指 导 (第 2 版 )M.北 京 :北 京 航 空 航 天 大学出 版 社 ,2012.2 彭 伟 .单 片 机 C 语 言 程 序 设 计 实 例 100 例 -基 于 8051+Proteus 仿 真 (第2 版 )M.北 京 :电 子 工 业 出 版 社 ,2012.3 张 海 军 ,赵 雪 松 .基 于 GPS 的 输 电 线 路 巡 检 管 理 系 统 的 设 计 与 实 现 J.电网 技术 ,2005,(4):78-81.4 况 军 ,李 志 咏 .基 于 GPS 的 输 电 线 路 智 能 巡 检 管 理 系 统 的 研 发 J.电 工 技术 ,2006,(1):8-10. 5 袁 东 .51 单 片 机 应 用 开 发 实 战 手 册 M.北 京 :电 子 工 业 出 版 社 ,2011. 6 邓 志 东 .基 于 PDA 和 GPS 技 术 的 用 电 检 查 现 场 巡 检 系 统 设 计 与 实 现 D.南 京 理工 大 学 ,2010. 7 郑 三 立 ,李 正 强 ,赵 伟 .基 于 GPS 和 网 络 技 术 的 线 路 智 能 巡 检 管 理 系 统 J.电 力系 统 自 动 化 ,2004,( 3) :90-92. 8 戴 佳 ,戴 卫 恒 .51 单 片 机 c 语 言 应 用 程 序 设 计 实 例 精 讲 M.北 京 :电 子 工 业出 版社 ,2006.9 李 朝 青 .单 片 机 原 理 及 接 口 技 术 (第 3 版 )M.北 京 :北 京 航 空 航 天 大 学 出 版社 ,2009.10 赵晶.基于 GPS/GIS 技术的电力线路巡检管理系统的研究D.哈尔滨工业大学硕士学位论文,2006.11 董领逊 .基于 GPS/GSM/GIS 技术的电力线路巡检管理系统的研究D.河北农业大学硕士学位论文,2005.12 江丽 .基于嵌入式操作的电力巡检的研究D.长春理工大学硕士学位论文,2009.13 李昂 .基于 SuperMap GIS 的电力巡检系统的设计D.西北师范大学硕士学位论文,2013.14 齐向东 ,刘立群.单片机控制技术实践 M.北京:中国电力出版社,2009.15 高岩 ,李青.GPS 巡线系统在输电线路巡检中的应用J.大众用电,2009.毕 业 设 计(论 文)任 务 书5本毕业设计(论文)课题工作进度计划:起 迄 日 期 工 作 内 容2015.11.04-2015.11.282015.11.29-2015.12.162015.12.17-2016.01.102016.02.25-2016.03.092016.03.09-2016.04.282016.04.29-2016.05.092016.05.09-2016.05.132016.05.14-2016.05.21在毕业设计管理系统里选题与指导教师共同确定毕业设计课题查阅指导教师下发的任务书,准备开题报告提交开题报告、外文参考资料及译文、论文大纲进行毕业设计(论文) ,填写中期检查表,提交论文草稿等按照要求完成论文或设计说明书等材料,提交论文定稿教师评阅学生毕业设计;学生准备毕业设计答辩参加毕业设计答辩,整理各项毕业设计材料并归档所在专业审查意见:通过 负责人: 2016 年 1 月 12 日 毕 业 设 计(论文) 开 题 报 告 1结合毕业设计(论文)课题情况,根据所查阅的文献资料,每人撰写不少于1000 字左右的文献综述: 一、研究背景及意义全球定位系统(英语:Global Positioning System,通常简称 GPS) ,又称全球卫星定位系统,是一个中距离圆型轨道卫星导航系统。它可以为地球表面绝大部分地区(98% )提供准确的定位、测速和高精度的时间标准。系统由美国国防部研制和维护,可满足位于全球任何地方或近地空间的军事用户连续精确的确定三维位置、三维运动和时间的需要。全球卫星定位系统 GPS 是开发的最具有开创意义的高新技术之一,其全球性、全能性、全天候性的导航定位、定时、测速优势必然会在诸多领域中得到越来越广泛的应用。随着我国经济的发展,GPS 在电力系统中的应用进行的研究也取得了不少成果,并付诸于实际应用。随着时间的推移,GPS 在电力系统中的应用范围将逐步扩大,应用技术亦会日趋成熟,必将给电力系统注入强大的活力。输电线路是电网的重要组成部分,由于其长期暴露在自然环境中,不仅要承受正常机械载荷和电力负荷的内部压力,还要经受污秽、雷击、强风、洪水、滑坡、沉陷、地震和鸟害等外界自然因素的侵害。上述因素会促使线路上各元件老化、疲劳,如不及时发现和消除隐患则可能发展成各种故障甚至事故,对电力系统的安全和稳定构成威胁,所以对线路进行定期巡检对于保证电网的安全运行有着非常重要的意义。通过对输电线路的定期巡视检查能掌握线路运行状况及周围环境的变化,及时发现设备缺陷或是危及线路安全的隐患,从而提出具体检修意见,以便及时消除缺陷、预防事故发生或将事故限制在最小范围内,从而保证输电线路安全和电力系统稳定,达到电力系统“安全、经济、多供、少损”的运行目标。二、研究现状尽管在线监控手段正在越来越多被应用于电力线路的巡检,但考虑到在线监控设施的局限性以及在线监控系统本身的需要,安排巡检人员现场到位的巡检方式在今后相当长的一段时间内并不会被完全取代。但是,传统的电力线路巡检方式存在到位率不高、漏检、记录不规范、重复工作量大、记录难以处理等问题。三、基于全球定位技术的电力巡检定位仪利用手持式的 GPS 卫星信号接收器完成杆塔的基准定位,并与数据库原始杆塔定位信息进行比较,确定正确的巡视对象和选择合适的观察位置,并将现场目击的线路和设备的缺陷情况记录在巡检仪上。定位仪主要完成三个功能:基准定位是利用手持机完成杆塔的基准定位;巡线操作是在日常巡检流程中利用手持机自动获取位置和信息;数据通信是只与后台管理系统的数据交换,包括接受后台系统下达的定位和巡检任务以及上传巡检数据。输电线路 GPS 巡检管理系统降低人为因素带来的漏检或错检问题,使部门管理层有效监督巡检人员工作状态。定位仪主要有以下优点:(1)使用环境不论在严冬还是酷暑季节,气温在1040 之间时 GPS巡检仪都能正常运行;(2)小巧灵便,易于携带;(3)与杆塔设备无硬件联系,不需在杆塔上装设辅助设备;(4)定位准确快捷,界面清晰明了,操作简便,易于掌握;(5)通过点选的方式记录线路设备缺陷,缺陷记录术语标准化,格式统一化(6)巡检仪操作系统安装在外设储存卡中,不会发生因断电和设备损坏造成的数据丢失问题。参考文献:1 楼 然 苗 , 李 光 飞 .单 片 机 课 程 设 计 指 导 ( 第 2 版 ) M.北 京 :北 京 航 空航 天 大 学 出 版 社 ,2012.2 彭 伟 .单 片 机 C 语 言 程 序 设 计 实 例 100 例 -基 于 8051+Proteus 仿 真( 第 2 版 ) M.北 京 :电 子 工 业 出 版 社 ,2012.3 张 海 军 , 赵 雪 松 .基 于 GPS 的 输 电 线 路 巡 检 管 理 系 统 的 设 计 与 实 现 J.电 网 技 术 ,2005,( 4) :78-81.4 况 军 , 李 志 咏 .基 于 GPS 的 输 电 线 路 智 能 巡 检 管 理 系 统 的 研 发 J.电工 技 术 ,2006, (1) :8-10. 5 戴 佳 , 戴 卫 恒 .51 单 片 机 c 语 言 应 用 程 序 设 计 实 例 精 讲 M.北 京 :电 子工 业 出 版 社 ,2006.6 李 朝 青 .单 片 机 原 理 及 接 口 技 术 (第 3 版 )M.北 京 :北 京 航 空 航 天 大 学出 版 社 ,2009.7 申 晓 留 , 周 长 玉 , 雷 琼 .全 球 定 位 系 统 (GPS)在 电 力 系 统 中 的 应 用 J.现 代 电 力 ,2003,( 12) :74-78.8 邓 志 东 .基 于 PDA 和 GPS 技 术 的 用 电 检 查 现 场 巡 检 系 统 设 计 与 实 现 D.南 京 理 工 大 学 ,2010.9 郑 三 立 , 张 锦 孚 , 周 仲 晖 , 李 正 强 , 谢 太 行 .基 于 GPS 和 单 片 机 的 智 能线 路 巡 检 管 理 系 统 J.电 工 技 术 杂 志 ,2004,( 9) :54-57.10 韩 爱 华 .GPS 在 配 网 检 修 和 巡 线 中 的 应 用 J.电 力 信 息 化 ,2005,( 3) :66-68.11 于 超 .基 于 移 动 GIS 的 线 路 巡 检 系 统 的 研 究 与 实 现 D.华 北 电 力大 学 ,2009.12 邓 凤 霞 .基 于 Mobile SVG/Java ME 的 移 动 GIS 线 路 巡 检 的 研 究 与实 现 D.华 北 电 力 大 学 ,2011.13 刘 翠 .智 能 线 路 巡 检 系 统 中 地 理 化 显 示 模 块 的 设 计 与 实 现 D.北京 邮 电 大 学 ,2010.14 肖 翔 .输 配 电 线 路 巡 检 管 理 系 统 研 发 D. 重 庆 大 学 ,2006.15 刘 凯 .移 动 位 置 服 务 在 线 路 巡 检 系 统 中 的 应 用 D. 山 东大 学 ,2005.毕 业 设 计(论文) 开 题 报 告 2本课题要研究或解决的问题和拟采用的研究手段(途径): 本课题要研究或解决的问题是:1.如何对系统的硬件设备进行选择,如何对硬件电路进行研究规划;2.在一定的基础上,如何进行软件编程以实现其功能;3.在完成上述两个步骤后,还需考虑怎样设计出整体的电路原理图;4.之后是电路板的焊制及其调试。研究手段(途径):1.去图书馆查阅相关资料,经过汇总,作为参考资料;2.充分利用网络资源,进行相关信息的搜索;3.以小组讨论的形式展开对课题的研究;4.理论联系实际,利用学校创新实验室中的设备进行模拟仿真。毕 业 设 计(论文) 开 题 报 告 指导教师意见:1对“文献综述”的评语:综述内容较为丰富,参考文献合理,概括了智能电力巡检定位仪系统所包含的研究内容的相关背景、基础知识、历史发展等,同时还对本课题所研究的任务进行了一定的阐述,对本课题的研究有一定的指导意义。2对本课题的深度、广度及工作量的意见和对设计(论文)结果的预测:本课题难度适中,工作量适中,做完本课题应该能出适当的设计程序和调试结果,并对智能电力巡检定位仪系统的设计有一个完整、清晰的认识。 3.是否同意开题: 同意 不同意指导教师: 2016 年 02 月 25 日所在专业审查意见:同意 负责人: 2016 年 03 月 08 日0译文题目: Global Positioning System 全球卫星定位系统 Global Positioning SystemThe Global Positioning System (GPS) is a global navigation satellite system (GNSS) developed by the United States Department of Defense and managed by the United States Air Force 50th Space Wing. It is the only fully functional GNSS in the world, can be used freely, and is often used by civilians for navigation purposes. The Global Positioning System (GPS) is a satellite-based navigation system made up of a network of 24 satellites placed into orbit by the U.S. Department of Defense. GPS was originally intended for military applications, but in the 1980s, the government made the system available for civilian use. GPS works in any weather conditions, anywhere in the world, 24 hours a day. There are no subscription fees or setup charges to use GPS. It uses a constellation of between 24 and 32 medium Earth orbit satellites that transmit precise radiowave signals, which allow GPS receivers to determine their current location, the time, and their velocity. Its official name is NAVSTAR GPS.Although NAVSTAR is not an acronym, a few backronyms have been created for it. Since it became fully operational in 1993, GPS has become a widely used aid to navigation worldwide, and a useful tool for map-making, land surveying, commerce, scientific uses, and hobbies such as geocaching. Also, the precise time reference is used in many applications including the scientific study of earthquakes and as a required time synchronization method for cellular network protocols such as the IS-95 standard for CDMA. GPS satellites circle the earth twice a day in a very precise orbit and transmit signal information to earth. GPS receivers take this information and use triangulation to calculate the users exact location. Essentially, the GPS receiver compares the time a signal was transmitted by a satellite with the time it was received. The time difference tells the GPS receiver how far away the satellite is. Now, with 1distance measurements from a few more satellites, the receiver can determine the users position and display it on the units electronic map. A GPS receiver must be locked on to the signal of at least three satellites to calculate a 2D position (latitude and longitude) and track movement. With four or more satellites in view, the receiver can determine the users 3D position (latitude, longitude and altitude). Once the users position has been determined, the GPS unit can calculate other information, such as speed, bearing, track, trip distance, distance to destination, sunrise and sunset time and more.HistoryThe first satellite navigation system, Transit, used by the United States Navy, was first successfully tested in 1960. Using a constellation of five satellites, it could provide a navigational fix approximately once per hour. In 1967, the U.S. Navy developed the Timation satellite which proved the ability to place accurate clocks in space, a technology that GPS relies upon. In the 1970s, the ground-based Omega Navigation System, based on signal phase comparison, became the first worldwide radio navigation system.The design of GPS is based partly on similar ground-based radio navigation systems, such as LORAN and the Decca Navigator developed in the early 1940s, and used during World War II. Additional inspiration for the GPS came when the Soviet Union launched the first man-made satellite, Sputnik in 1957. A team of U.S. scientists led by Dr. Richard B. Kershner were monitoring Sputniks radio transmissions. They discovered that, because of the Doppler effect, the frequency of the signal being transmitted by Sputnik was higher as the satellite approached, and lower as it continued away from them. They realized that since they knew their exact location on the globe, they could pinpoint where the satellite was along its orbit by measuring the Doppler distortion.Initially the highest quality signal was reserved for military use, while the signal available for civilian use was intentionally degraded (“Selective Availability“, SA). Selective Availability was ended in 2000, improving the precision of civilian GPS 2from about 100m to about 20m.Of crucial importance for the function of GPS is the placement of atomic clocks in the satellites, first proposed by Friedwardt Winterberg in 1955. Only then can the required position accuracy be reached.Basic concept of GPSA GPS receiver calculates its position by precisely timing the signals sent by the GPS satellites high above the Earth. Each satellite continually transmits messages containing the time the message was sent, precise orbital information (the ephemeris), and the general system health and rough orbits of all GPS satellites (the almanac). The receiver measures the transit time of each message and computes the distance to each satellite. Geometric trilateration is used to combine these distances with the location of the satellites to determine the receivers location. The position is displayed, perhaps with a moving map display or latitude and longitude; elevation information may be included. Many GPS units also show derived information such as direction and speed, calculated from position changes.It might seem three satellites are enough to solve for position, since space has three dimensions. However, even a very small clock error multiplied by the very large speed of lightthe speed at which satellite signals propagateresults in a large positional error. Therefore receivers use four or more satellites to solve for x, y, z, and t, which is used to correct the receivers clock. While most GPS applications use the computed location only and effectively hide the very accurately computed time, it is used in a few specialized GPS applications such as time transfer, traffic signal timing, and synchronization of cell phone base stations.Although four satellites are required for normal operation, fewer apply in special cases. If one variable is already known (for example, a ship or plane may have known elevation), a receiver can determine its position using only three satellites. Some GPS receivers may use additional clues or assumptions (such as reusing the last known altitude, dead reckoning, inertial navigation, or including information from the vehicle computer) to give a degraded position when fewer than four satellites are visible.3Position calculation introductionTo provide an introductory description of how a GPS receiver works, measurement errors will be ignored in this section. Using messages received from a minimum of four visible satellites, a GPS receiver is able to determine the satellite positions and time sent. The x, y, and z components of position and the time sent are designated as where the subscript i is the satellite number and has the value ,1, 2, 3, or 4. Knowing the indicated time the message was received , the GPS receiver can compute the indicated transit time, . of the message. Assuming ()the message traveled at the speed of light, c, the distance traveled, can be computed as . Knowing the distance from GPS receiver to a satellite and the position ()of a satellite implies that the GPS receiver is on the surface of a sphere centered at the position of a satellite. Thus we know that the indicated position of the GPS receiver is at or near the intersection of the surfaces of four spheres. In the ideal case of no errors, the GPS receiver will be at an intersection of the surfaces of four spheres. The surfaces of two spheres, if they intersect in more than one point, intersect in a circle. A figure, Two Sphere Surfaces Intersecting in a Circle, is shown below.Two sphere surfaces intersecting in a circle. The article, trilateration, shows mathematically that the surfaces of two spheres, intersecting in more than one point, intersect in a circle.A circle and sphere surface in most cases of practical interest intersect at two points, although it is conceivable that they could intersect at zero points, one point, or in the very special case in which the centers of the three spheres are colinear (i.e. all three on the same straight line) the sphere surface could intersect the entire circumference of the circle. Another figure, Surface of Sphere Intersecting a Circle (not disk) at Two Points, shows this intersection. The two intersections are marked with dots. Again trilateration clearly shows this mathematically. The correct position of the GPS receiver is the intersection that is closest to the surface of the earth for automobiles and other near-Earth vehicles. The correct position of the GPS receiver is 4also the intersection which is closest to the surface of the sphere corresponding to the fourth satellite. (The two intersections are symmetrical with respect to the plane containing the three satellites. If the three satellites are not in the same orbital plane, the plane containing the three satellites will not be a vertical plane passing through the center of the Earth. In this case one of the intersections will be closer to the earth than the other. The near-Earth intersection will be the correct position for the case of a near-Earth vehicle. The intersection which is farthest from Earth may be the correct position for space vehicles.)Correcting a GPS receivers clockThe method of calculating position for the case of no errors has been explained. One of the most significant error sources is the GPS receivers clock. Because of the very large value of the speed of light, c, the estimated distances from the GPS receiver to the satellites, the pseud oranges, are very sensitive to errors in the GPS receiver clock. This suggests that an extremely accurate and expensive clock is required for the GPS receiver to work. On the other hand, manufacturers prefer to build inexpensive GPS receivers for mass markets. The solution for this dilemma is based on the way sphere surfaces intersect in the GPS problem.It is likely that the surfaces of the three spheres intersect, since the circle of intersection of the first two spheres is normally quite large, and thus the third sphere surface is likely to intersect this large circle. It is very unlikely that the surface of the sphere corresponding to the fourth satellite will intersect either of the two points of intersection of the first three, since any clock error could cause it to miss intersecting a point. However, the distance from the valid estimate of GPS receiver position to the surface of the sphere corresponding to the fourth satellite can be used to compute a clock correction. Let denote the distance from the valid estimate of GPS receiver 4position to the fourth satellite and let denote the pseud orange of the fourth satellite. Let . Note that is the distance from the computed GPS receiver =44position to the surface of the sphere corresponding to the fourth satellite. Thus the quotient, , provides an estimate of(correct time) - (time indicated by the =/5receivers on-board clock), and the GPS receiver clock can be advanced if b is positive or delayed if b is negative. Space segmentSee also: GPS satellite and List of GPS satellite launchesA visual example of the GPS constellation in motion with the Earth rotating. Notice how the number of satellites in view from a given point on the Earths surface, in this example at 45N, changes with time.The space segment (SS) comprises the orbiting GPS satellites, or Space Vehicles (SV) in GPS parlance. The GPS design originally called for 24 SVs, eight each in three circular orbital planes, but this was modified to six planes with four satellites each. The orbital planes are centered on the Earth, not rotating with respect to the distant stars. The six planes have approximately 55 inclination (tilt relative to Earths equator) and are separated by 60 right ascension of the ascending node (angle along the equator from a reference point to the orbits intersection). The orbits are arranged so that at least six satellites are always within line of sight from almost everywhere on Earths surface. Orbiting at an altitude of approximately 20,200 kilometers about 10 satellites are visible within line of sight (12,900 miles or 10,900 nautical miles; orbital radius of 26,600 km (16,500 mi or 14,400 NM), each SV makes two complete orbits each sidereal day.27 The ground track of each satellite therefore repeats each (sidereal) day. This was very helpful during development, since even with just four satellites, correct alignment means all four are visible from one spot for a few hours each day. For 6military operations, the ground track repeat can be used to ensure good coverage in combat zones.As of March 2008, there are 31 actively broadcasting satellites in the GPS constellation, and two older, retired from active service satellites kept in the constellation as orbital spares. The additional satellites improve the precision of GPS receiver calculations by providing redundant measurements. With the increased number of satellites, the constellation was changed to a nonuniform arrangement. Such an arrangement was shown to improve reliability and availability of the system, relative to a uniform system, when multiple satellites fail. Control segment The flight paths of the satellites are tracked by US Air Force monitoring stations in Hawaii, Kwajalein, Ascension Island, Diego Garcia, and Colorado Springs, Colorado, along with monitor stations operated by the National Geospatial-Intelligence Agency(NGA).The tracking information is sent to the Air Force Space Commands master control station at Schriever Air Force Base in Colorado Springs, which is operated by the 2nd Space Operations Squadron (2 SOPS) of the United States Air Force (USAF). Then 2 SOPS contacts each GPS satellite regularly with a navigational update (using the ground antennas at Ascension Island, Diego Garcia, Kwajalein, and Colorado Springs). These updates synchronize the atomic clocks on board the satellites to within a few nanoseconds of each other, and adjust the ephemeris of each satellites internal orbital model. The updates are created by a 7Kalman filter which uses inputs from the ground monitoring stations, space weather information, and various other inputs. Satellite maneuvers are not precise by GPS standards. So to change the orbit of a satellite, the satellite must be marked unhealthy, so receivers will not use it in their calculation. Then the maneuver can be carried out, and the resulting orbit tracked from the ground. Then the new ephemeris is uploaded and the satellite marked healthy again.User segmentGPS receivers come in a variety of formats, from devices integrated into cars, phones, and watches, to dedicated devices such as those shown here from manufacturers Trimble, Garmin and Leica (left to right).The users GPS receiver is the user segment (US) of the GPS. In general, GPS receivers are composed of an antenna, tuned to the frequencies transmitted by the satellites, receiver-processors, and a highly-stable clock (often a crystal oscill
温馨提示:
1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
2: 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
3.本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
提示  人人文库网所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
关于本文
本文标题:智能电力巡检定位仪的设计【说明书论文开题报告外文翻译】
链接地址:https://www.renrendoc.com/p-10276644.html

官方联系方式

2:不支持迅雷下载,请使用浏览器下载   
3:不支持QQ浏览器下载,请用其他浏览器   
4:下载后的文档和图纸-无水印   
5:文档经过压缩,下载后原文更清晰   
关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

网站客服QQ:2881952447     

copyright@ 2020-2025  renrendoc.com 人人文库版权所有   联系电话:400-852-1180

备案号:蜀ICP备2022000484号-2       经营许可证: 川B2-20220663       公网安备川公网安备: 51019002004831号

本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知人人文库网,我们立即给予删除!