斯坦福机器人运动学仿真【说明书论文开题报告外文翻译】
收藏
资源目录
压缩包内文档预览:(预览前20页/共30页)
编号:10276652
类型:共享资源
大小:387.16KB
格式:ZIP
上传时间:2018-07-09
上传人:小***
认证信息
个人认证
林**(实名认证)
福建
IP属地:福建
50
积分
- 关 键 词:
-
斯坦福
机器人
运动学
仿真
说明书
仿单
论文
开题
报告
讲演
呈文
外文
翻译
- 资源描述:
-
斯坦福机器人运动学仿真【说明书论文开题报告外文翻译】,斯坦福,机器人,运动学,仿真,说明书,仿单,论文,开题,报告,讲演,呈文,外文,翻译
- 内容简介:
-
毕 业 设 计(论 文)任 务 书1本毕业设计(论文)课题应达到的目的:通过毕业设计,使学生受到电气工程师所必备的综合训练,在不同程度上提高各种设计及应用能力,具体包括以下几方面:1. 调查研究、中外文献检索与阅读的能力。2. 综合运用专业理论、知识分析解决实际问题的能力。3. 定性与定量相结合的独立研究与论证的能力。4. 实验方案的制定、仪器设备的选用、调试及实验数据的测试、采集与分析处理的能力。5. 设计、计算与绘图的能力,包括使用计算机的能力。6. 逻辑思维与形象思维相结合的文字及口头表达的能力。 2本毕业设计(论文)课题任务的内容和要求(包括原始数据、技术要求、工作要求等):1.本 课 题 将 要 运 用 Matlab 软 件 仿 真 Stanford 机 器 人 的 运 动 学 , 模 拟 出Stanford 机 器 人 的 运 动 。2.设计系统的软件程序,包括详细的软件运行,模拟系统连接,程序调试等详细步骤;3.最终完成一篇符合金陵科技学院毕业论文规范的系统技术文档,包括各类技术资料、程序等;4.系统要有实际的运行过程,能完整的完成整个系统的仿真;5.本子系统要与整个系统能够配合运行;6.能够完成各项任务,参加最后的毕业设计答辩。毕 业 设 计(论 文)任 务 书3对本毕业设计(论文)课题成果的要求包括图表、实物等硬件要求: 1.按期完成一篇符合金陵科技学院论文规范的毕业设计说明书(毕业论文) ,能详细说明设计步骤和思路;2.能有结构完整,合理可靠的技术方案;3.能有相应的电子原件电路设计说明;4.有相应的图纸和技术参数说明。5.要求 Stanford 机器人仿真系统能在实验室现有的设备基础上调试成功,并在答辩时完成实际系统展示。 4主要参考文献: 1 STANFORD 型主机械手平衡系统.陈丰, 郑州工业大学学报.1996.2 主 从式智能机器人 STANFORD 型主机械手研究.陈丰, 河南科学.1997.3 空间遥控主-从式智能机器人 STANFORD 型主机械手设计研究 .宁袆,林功顺 .郑州轻工业学院学报:自然科学版 .1995.4 主 从式空间遥控机器人 STANFORD 型主机械手的平衡系统.宁祎. 中国机械工程.1995.5 主 从式智能机器人 STANFORD 型主机械手研究.尹国英. 管理观察.1997.6 Stanford 机械手运动学仿真模拟.杜华,杨威. 长春工程学院学报:自然科学版.2009.7 Stanford 机械手运动路径轨迹的规划研究.贾卫平. 机械工程师.2005.8 机械手运动学仿真的实现.贾卫平. 机械设计与制造.2005.9 基于 Matlab 的工业机器人运动学分析与仿真.王智兴,樊文欣,张保成. 机电工程.2012. 10 Stanford 机械手运动学仿真模拟.杜华,杨威. 长春工程学院学报:自然科学版.2009.11 基于旋量理论的 Stanford 机器人的逆运动学分析.王晓磊,李晓丹. 机床与液压.2015.12 Stanford 机械手运动学及仿真模拟的研究.贾卫平.大连理工大学.2000.13基于 MATLAB Robotics 工具箱的 SCARA 机器人轨迹规划与仿真.左富勇,胡小平,谢珂,朱秋玲.湖南科技大学学报.201214 基于 MATLAB Robotics Toolbox 的机器人仿真实验教学.谢斌,蔡自兴.计算机教育.2010.15 基于 MATLABA 的机器人运动仿真研究.罗家佳,胡国清.厦门大学学报.2005. 毕 业 设 计(论 文)任 务 书5本毕业设计(论文)课题工作进度计划:2015.11.04-2015.11.282015.11.29-2015.12.162015.12.17-2016.01.102016.02.25-2016.03.092016.03.09-2016.04.282016.04.29-2016.05.092016.05.09-2016.05.132016.05.14-2016.05.21在毕业设计管理系统里选题与指导教师共同确定毕业设计课题查阅指导教师下发的任务书,准备开题报告提交开题报告、外文参考资料及译文、论文大纲进行毕业设计(论文) ,填写中期检查表,提交论文草稿等按照要求完成论文或设计说明书等材料,提交论文定稿教师评阅学生毕业设计;学生准备毕业设计答辩参加毕业设计答辩,整理各项毕业设计材料并归档所在专业审查意见:通过 负责人: 2016 年 1 月 12 日 毕 业 设 计(论文) 开 题 报 告 1结合毕业设计(论文)课题情况,根据所查阅的文献资料,每人撰写不少于1000 字左右的文献综述: 现代社会的发展日新月异,由于科技的不断进步,机器人由于其高智能,低成本,在现代社会的应用越来越广泛,在一定程度上还可以让机器人代替人去执行一些危险操作,以保障工人的人身安全。本课题以 MATLAB 为基础,对斯坦福机器人的运动学进行仿真,通过编程模拟机器人的运动轨迹,让其进行一些特定的动作、指令。一、 斯坦福机器人的基本概念机器人是一种综合了机、电、液、的复杂动态系统,只有通过计算机仿真模拟系统的动态特性,才能揭示机构的合理运动方案及有效的控制算法,从而解决机器人设计、制造以及运行过程中的问题。目前对机器人运动学仿真系统的研究主要集中在运动学算法及简单的二维图形仿真研究上。针对斯坦福(Stanford)机械手,再对其结构分析的基础上,建立其运动学模型,根据各关节运动参数,求解机械手位置和姿态或在给定相关的位置和姿态参数,求解各关节运动参数,另外,对机械手运动路径进行轨迹规划的研究。利用 MATLAB 软件,MATLAB 是一种可视化的具有强大矩阵计算能力的编程语言,在工业研究、产品开发、数值分析和科学计算等工程及科学方面的教学与研究是一个十分有效的工具。这次以 Stanford 机械手作为仿真对象,首先分析其结构和连杆参数,接着采用改进的 D-H 法建立运动学方程,运用 Robitices Tool-box 构建运动学模型并进行运动学仿真。二、斯坦福机器人的发展趋势机器人是传统的机构学与近代电子技术相结合的产物,也是当代高新技术发展的一个重要内容。机器人的外表不一定像人,有的根本不像人。因为人们制造机器人是为了让机器人来代替人的工作,所以希望机器人能够具有人的劳动机能。第一代遥控机械手诞生于 1984 年美国的阿贡实验室,当时用来对付放射性材料进行远距离操作,以保护原子能工作者免受放射性照射。第一台工业机器人诞生于 1956 年,是英格尔博格(J.Engelberger)将数字控制技术与机械臂相结合的产物。这台机器人可通过编程来灵活的改变作业程序。至今绝大部分使用中的工业机器人仍采用这种编程方式。第一台工业机器人的商用产品诞生于 1962 年,当时,其作业仅限于上、下料。而后的发展比预想的要慢。在机器人发展的历史上,存在着两条不同的技术路线:一条是日本和瑞典所走的“需求牵引,技术驱动”。把美国开拓的机器人,结合工业发展的需求,开发出一系列特定应用的机器人,如:弧焊、点焊、喷漆、装配、刷胶、建筑等等,从而形成了庞大的机器人产业,目前全世界装机容量已达 60 多万台,近几年仍以每年 20%的速率在增长;一条是把机器人作为研究人工智能的载体,看成计算机科学的一部分,即:单纯从技术上仿人的某些功能出发,研究智能机器人。如:美国、英国的相当的一部分大学及研究所所做的,由于人工智能和其他智能技术的发展远落后于人们对它的期望,致使绝大部分研究成果始终走不出实验室。在机械制造中,机器人大都工作于结构性环境中,即工作任务、完成工作的步骤、工件存放的位置、工作对象等等都是事先已知的,而且定位精度也是完全确定的,所以机器人完全可以按事先编好的程序重复不断的工作。当机器人工作的环境是非结构化的,如在建筑、采掘、运输等行业的工作环境中时,虽然总任务可以事先确定,但如何去完成,要根据当时的实际情况来确定与制定。因此,研究具有感知、思维及动作,能在非结构环境中自主式工作得机器人就成了机器人学的研究的总目标。这曾是 80 年代各国高技术计划追逐的。然而,十多年的时间过去了,实践证明要达到这一目标,还需要经过长时间的努力,等待一些重要技术有所突破,特别是机器视觉、环境建模、问题求解、规划等这一类智能问题。因此 80 年代末,各国把发胀的目标调整到更现实的基础上,即把以多传感器为基础的计算机辅助遥控加上局部自治作为发展非结构环境下工作的机器人的主要方向,而把只能自治机器人则作为一个更长远的科学问题去探索。这就是新一代机器人化的机器。另一个值得注意的方向是:传统机械的机器人化,这是继机电一体化后,更为完整的一个发展方向,柔性装配系统是一个最典型的例子。目前,数控机床、工程机械、采掘机械等已开始向这一方向发展,进一步的发展将会带来这些机械本身的革命。21 世纪已经来临,技术的发展及世界市场的竞争日益强烈,新产品不断更新换代,开发周期越来越短,生产批量越来越少,而产品的生命周期也越来越短,这一发展态势将为机器人技术的进一步研究与开发提供极大的机遇。综上所述,机器人发展到现在已不局限于机器人本身,而将作为新一代整个机器的发展方向。三、斯坦福机器人的运动学仿真通过 MATLAB 的矩阵计算能力和 Robitices Tool-box 构建运动学模型,对斯坦福机械手构建各种参数,然后模拟出机械手的运动轨迹从而进行仿真。参考文献:1 STANFORD 型 主 机 械 手 平 衡 系 统 .陈 丰 , 郑 州 工 业 大 学 学 报 .1996.2 主从式智能机器人 STANFORD 型主机械手研究.陈丰,河南科学.1997.3 空间遥控主-从式智能机器人 STANFORD 型主机械手设计研究 .宁袆,林功顺 . 郑州轻工业学院学报:自然科学版 .1995.4 主从式空间遥控机器人 STANFORD 型主机械手的平衡系统.宁祎.中国机械工程.1995.5 主 从 式 智 能 机 器 人 STANFORD 型 主 机 械 手 研 究 .尹 国 英 . 管 理 观 察 .1997.6 Stanford 机械手运动学仿真模拟.杜华,杨威.长春工程学院学报:自然科学版.2009.7 Stanford 机械手运动路径轨迹的规划研究.贾卫平.机械工程师.2005.8 机械手运动学仿真的实现.贾卫平.机械设计与制造.2005.9 基 于 Matlab 的 工 业 机 器 人 运 动 学 分 析 与 仿 真 .王 智 兴 , 樊 文 欣 , 张 保 成 . 机 电工 程 .2012. 10 Stanford 机械手运动学仿真模拟 .杜华,杨威.长春工程学院学报:自然科学版.2009.11 基于旋量理论的 Stanford 机器人的逆运动学分析.王晓磊,李晓丹.机床与液压.2015.12 Stanford 机械手运动学及仿真模拟的研究.贾卫平.大连理工大学.2000.13基于 MATLAB Robotics 工具箱的 SCARA 机器人轨迹规划与仿真.左富勇,胡小平,谢珂,朱秋玲.湖南科技大学学报.201214塔哈的变结构控制方法的工业机器人,在机器人控制理论与应用、外事彼得北荷兰公司,1988 年15新 DJ 埃文斯,四阶龙格-库塔方法的初始值问题的误差控制与计算机数学,第 139 号(1991)毕 业 设 计(论文) 开 题 报 告 2本课题要研究或解决的问题和拟采用的研究手段(途径): 本课题要研究或解决的问题是:1.如何使用 MATLAB 建立矩阵,熟练使用 Robitices Tool-box 建立,机器人参数的设定,D-H 变换,机器人连杆参数以及矩阵的算法,还有图像的模拟等;2.在一定的基础上,如何进行软件编程运算;3.在完成上述两个步骤后,还需考虑怎样设计出整体的仿真模拟。研究手段(途径):1.去图书馆查阅相关资料,经过汇总,作为参考资料;2.充分利用网络资源,进行相关信息的搜索;3.理论联系实际,利用各种资料反复尝试,进行仿真。毕 业 设 计(论文) 开 题 报 告 指导教师意见:1对“文献综述”的评语:综述内容较为丰富,参考文献合理,概括斯坦福机器人在工业中的应用,机器人的运动学研究内容的相关背景、基础知识、历史发展等,同时还对本课题所研究的任务进行了一定的阐述,对本课题的研究有一定的指导意义.2对本课题的深度、广度及工作量的意见和对设计(论文)结果的预测:本课题研究的任务是对斯坦福机器人的运动学进行研究和仿真,是对电气控制领域应用较多的仿真技术的一个实例进行探讨,技术相对成熟,深度中等,但是涉及到的知识面较广,例如机器人学、控制系统、计算机仿真等技术,学生可以通过实例调研,查阅专业资料,进行系统调试,来实现最终的设计任务和结果,并对自己的专业应用能力是一个非常大的提高。3.是否同意开题: 同意 不同意指导教师: 2016 年 03 月 04 日所在专业审查意见:同意 负责人: 2016 年 03 月 08 日译文题目: Industrial robot 工业机器人 学生姓名: 钱凯 学 号: 12052020320Industrial robotAfter more than 40 years of development, since its first appearance till now, the robot has already been widely applied in every industrial fields, and it has become the important standard of industry modernization.Robotics is the comprehensive technologies that combine with mechanics, electronics, informatics and automatic control theory. The level of the robotic technology has already been regarded as the standard of weighing a national modern electronic-mechanical manufacturing technology.Over the past two decades, the robot has been introduced into industry to perform many monotonous and often unsafe operations. Because robots can perform certain basic more quickly and accurately than humans, they are being increasingly used in various manufacturing industries.With the maturation and broad application of net technology, the remote control technology of robot based on net becomes more and more popular in modern society. It employs the net resources in modern society which are already three to implement the operatio of robot over distance. It also creates many of new fields, such as remote experiment, remote surgery, and remote amusement. Whats more, in industry, it can have a beneficial impact upon the conversion of manufacturing means.The key words are reprogrammable and multipurpose because most single-purpose machines do not meet these two requirements. The term “reprogrammable” implies two things: The robot operates according to a written program, and this program can be rewritten to accommodate a variety of manufacturing tasks. The term “multipurpose” means that the robot can perform many different functions, depending on the program and tooling currently in use.Developed from actuating mechanism, industrial robot can imitation some actions and functions of human being, which can be used to moving all kinds of material components tools and so on, executing mission by execuatable program multifunction manipulator. It is extensive used in industry and agriculture production, astronavigation and military engineering.During the practical application of the industrial robot, the working efficiency and quality are important index of weighing the performance of the robot. It becomes 1key problems which need solving badly to raise the working efficiencies and reduce errors of industrial robot in operating actually. Time-optimal trajectory planning of robot is that optimize the path of robot according to performance guideline of minimum time of robot under all kinds of physical constraints, which can make the motion time of robot hand minimum between two points or along the special path. The purpose and practical meaning of this research lie enhance the work efficiency of robot.Due to its important role in theory and application, the motion planning of industrial robot has been given enough attention by researchers in the world. Many researchers have been investigated on the path planning for various objectives such as minimum time, minimum energy, and obstacle avoidance.The basic terminology of robotic systems is introduced in the following:A robot is a reprogrammable, multifunctional manipulator designed to move parts, materials, tools, or special devices through variable programmed motions for the performance of a variety of different task. This basic definition leads to other definitions, presented in the following paragraphs that give a complete picture of a robotic system.Preprogrammed locations are paths that the robot must follow to accomplish work. At some of these locations, the robot will stop and perform some operation, such as assembly of parts, spray painting, or welding. These preprogrammed locations are stored in the robots memory and are recalled later for continuous operation. Furthermore, these preprogrammed locations, as well as other programming feature, an industrial robot is very much like a computer, where data can be stored and later recalled and edited.The manipulator is the arm of the robot. It allows the robot to bend, reach, and twist. This movement is provided by the manipulators axes, also called the degrees of freedom of the robot. A robot can have from 3 to 16 axes. The term degrees of freedom will always relate to the number of axes found on a robot.The tooling and grippers are not part of the robotic system itself: rather, they are attachments that fit on the end of the robots arm. These attachments connected to the end of the robots arm allow the robot to lift parts, spot-weld, paint, arc-well, drill, 2deburr, and do a variety of tasks, depending on what is required of the robot.The robotic system can also control the work cell of the operating robot. The work cell of the robot is the total environment in which the robot must perform its task. Included within this cell may be the controller, the robot manipulator, a work table, safety features, or a conveyor. All the equipment that is required in order for the robot to do its job is included in the work cell. In addition, signals from outside devices can communicate with the robot in order to tell the robot when it should assemble parts, pick up parts, or unload parts to a conveyor.The robotic system has three basic components: the manipulator, the controller, and the power source. ManipulatorThe manipulator, which dose the physical work of the robotic system, consists of two sections: the mechanical section and the attached appendage. The manipulator also has a base to which the appendages are attached.The base of the manipulator is usually fixed to the floor of the work area. Sometimes, though, the base may be movable. In this case, the base is attached to either a rail or a track, allowing the manipulator to be moved from one location to anther.As mentioned previously, the appendage extends from the base of the robot. The appendage is the arm of the robot. It can be either a straight, movable arm or a jointed arm. The jointed arm is also known as an articulated arm.The appendages of the robot manipulator give the manipulator its various axes of motion. These axes are attached to a fixed base, which, in turn, is secured to a mounting. This mounting ensures that the manipulator will remain in one location.At the end of the arm, a wrist is connected. The wrist is made up of additional axes and a wrist flange. The wrist flange allows the robot user to connect different tooling to the wrist for different jobs.The manipulators axes allow it to perform work within a certain area. This area is called the work cell of the robot, and its size corresponds to the size of the manipulator. As the robots physical size increases, the size of the work cell must also increase.3The movement of the manipulator is controlled by actuators, or drive system. The actuator, or drive system, allows the various axes to move within the work cell. The drive system can use electric, hydraulic, or pneumatic power. The energy developed by the drive system is converted to mechanical power by various mechanical drive systems. The drive systems are coupled through mechanical linkages. These linkages, in turn, drive the different axes of the robot. The mechanical linkages may be composed of chains, gears, and ball screws.ControllerThe controller in the robotic system is the heart of the operation. The controller stores preprogrammed information for later recall, controls peripheral devices, and communicates with computers within the plant for constant updates in production.The controller is used to control the robot manipulators movements as well as to control peripheral components within the work cell. The user can program the movements of the manipulator into the controller through the use of a hand-held teach pendant. This information is stored in the memory of the controller for later recall. The controller stores all program data for the robotic system. It can store several different programs, and any of these programs can be edited.The controller is also required to communicate with peripheral equipment within the work cell. For example, the controller has an input line that identifies when a machining operation is completed. When the machine cycle is completed, the input line turns on, telling the controller to position the manipulator so that it can pick up the finished part. Then, a new part is picked up by the manipulator and placed into the machine. Next, the controller signals the machine to start operation.The controller can be made from mechanically operated drums that step through a sequence of events. This type of controller operates with a very simple robotic system. The controllers found on the majority of robotic systems are more complex devices and represent state-of-the-art electronics. This is, they are microprocessor-operated. These microprocessors are either 8-bit, 16-bit, or 32-bit processors. This power allows the controller to the very flexible in its operation.The controller can send electric signals over communication lines that allow it to talk with the various axes of the manipulator. This two-way communication between 4the robot manipulator and the controller maintains a constant update of the location and the operation of the system. The controller also controls any tooling placed on the end of the robots wrist.The controller also has the job of communicating with the different plant computers. The communication link establishes the robot as part of a computer-assisted manufacturing (CAM) system.As the basic definition stated, the robot is a reprogrammable, multifunctional manipulator. Therefore, the controller must contain some type of memory storage. The microprocessor-based systems operate in conjunction with solid-state memory devices. These memory devices may be magnetic bubbles, random-access memory, floppy disks, or magnetic tape. Each memory storage device stores program information for later recall or for editing.Power supplyThe power supply is the unit that supplies power to the controller and the manipulator. Two types of power are delivered to the robotic system. One type of power is the AC power for operation of the controller. The other type of power is used for driving the various axes of the manipulator. For example, if the robot manipulator is controlled by hydraulic or pneumatic drives, control signals are sent to these devices, causing motion of the robot.For each robotic system, power is required to operate the manipulator. This power can be developed from either a hydraulic power source, a pneumatic power source, or an electric power source. These power sources are part of the total components of the robotic work cell.Classification of RobotsIndustrial robots vary widely in size, shape, number of axes, degrees of freedom, and design configuration. Each factor influences the dimensions of the robots working envelope or the volume of space within which it can move and perform its designated task. A broader classification of robots can been described as blew.Fixed and Variable-Sequence Robots. The fixed-sequence robot (also called a pick-and place robot) is programmed for a specific sequence of operations. Its movements are from point to point, and the cycle is repeated continuously. The 5variable-sequence robot can be programmed for a specific sequence of operations but can be reprogrammed to perform another sequence of operation.Playback Robot. An operator leads or walks the playback robot and its end effector through the desired path. The robot memorizes and records the path and sequence of motions and can repeat them continually without any further action or guidance by the operator.Numerically Controlled Robot. The numerically controlled robot is programmed and operated much like a numerically controlled machine. The robot is servo-controlled by digital data, and its sequence of movements can be changed with relative ease.Intelligent Robot. The intellingent robot is capable of performing some of the functions and tasks carried out by human beings. It is equipped with a variety of sensors with visual and tactile capabilities.Robot ApplicationsThe robot is a very special type of production tool; as a result, the applications in which robots are used are quite broad. These applications can be grouped into three categories: material processing, material handling and assembly.In material processing, robots use to process the raw material. For example, the robot tools could include a drill and the robot would be able to perform drilling operations on raw material.Material handling consists of the loading, unloading, and transferring of workpieces in manufacturing facilities. These operations can be performed reliably and repeatedly with robots, thereby improving quality and reducing scrap losses.Assembly is another large application area for using robotics. An automatic assembly system can incorporate automatic testing, robot automation and mechanical handling for reducing labor costs, increasing output and eliminating manual handling concerns.Hydraulic SystemThere are only three basic methods of transmitting power: electrical, mechanical, and fluid power. Most applications actually use a combination of the three methods to obtain the most efficient overall system. To properly determine which principle 6method to use, it is important to know the salient features of each type. For example, fluid systems can transmit power more economically over greater distances than can mechanical type. However, fluid systems are restricted to shorter distances than are electrical systems.Hydraulic power transmission systems are concerned with the generation, modulation, and control of pressure and flow, and in general such systems include:1. Pumps which convert available power from the prime mover to hydraulic power at the actuator.2. Valves which control the direction of pump-flow, the level of power produced, and the amount of fluid-flow to the actuators. The power level is determined by controlling both the flow and pressure level.3. Actuators which convert hydraulic power to usable mechanical power output at the point required.4. The medium, which is a liquid, provides rigid transmission and control as well as lubrication of components, sealing in valves, and cooling of the system.5. Connectors which link the various system components, provide power conductors for the fluid under pressure, and fluid flow return to tank(reservoir).6. Fluid storage and conditioning equipment which ensure sufficient quality and quantity as well as cooling of the fluid.Hydraulic systems are used in industrial applications such as stamping presses, steel mills, and general manufacturing, agricultural machines, mining industry, aviation, space technology, deep-sea exploration, transportation, marine technology, and offshore gas and petroleum exploration. In short, very few people get through a day of their lives without somehow benefiting from the technology of hydraulics.The secret of hydraulic systems success and widespread use is its versatility and manageability. Fluid power is not hindered by the geometry of the machine as is the case in mechanical systems. Also, power can be transmitted in almost limitless quantities because fluid systems are not so limited by the physical limitations of materials as are the electrical systems. For example, the performance of an 7electromagnet is limited by the saturation limit of steel. On the other hand, the power limit of fluid systems is limited only by the strength capacity of the material.Industry is going to depend more and more on automation in order to increase productivity. This includes remote and direct control of production operations, manufacturing processes, and materials handling. Fluid power is the muscle of automation because of advantages in the following four major categories.1.Ease and accuracy of control. By the use of simple levers and push buttons,the operator of a fluid power system can readily start, stop, speed up or slow down, and position forces which provide any desired horsepower with tolerances as precise as one ten-thousandth of an inch. Fig. shows a fluid power system which allows an aircraft pilot to raise and lower his landing gear. When the pilot moves a small control valve in one direction, oil under pressure flows to one end of the cylinder to lower the landing gear. To retract the landing gear, the pilot moves the valve lever in the opposite direction, allowing oil to flow into the other end of the cylinder.2.Multiplication of force. A fluid power system (without using cumbersome gears, pulleys, and levers) can multiply forces simply and efficiently from a fraction of an ounce to several hundred tons of output.3.Constant force or torque. Only fluid power systems are capable of providing constant force or torque regardless of speed changes. This is accomplished whether the work output moves a few inches per hour, several hundred inches per minute, a few revolutions per hour, or thousands of revolutions per minute.4.Simplicity, safety, economy. In general, fluid power systems use fewer moving parts than comparable mechanical or electrical systems. Thus, they are simpler to maintain and operate. This, in turn, maximizes safety, compactness, and reliability. For example, a new power steering control designed has made all other kinds of power systems obsolete on many off-highway
- 温馨提示:
1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
2: 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
3.本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

人人文库网所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。