




已阅读5页,还剩6页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
名校真题 测试卷 9 (比例百分数篇)时间:15 分钟 满分 5 分 姓名_ 测试成绩_1 (06 年清华附中考题)甲、乙两种商品,成本共 2200 元,甲商品按 20%的利润定价,乙商品按 15%的利润定价,后来都按定价的 90%打折出售,结果仍获利 131 元,甲商品的成本是_元. 2 (05 年 101 中学考题)100 千克刚采下的鲜蘑菇含水量为 99%,稍微晾晒后,含水量下降到 98%,那么这 100 千克的蘑菇现在还有多少千克呢? 3 (06 年实验中学考题)有两桶水:一桶 8 升,一桶 13 升,往两个桶中加进同样多的水后,两桶中水量之比是 5:7,那麽往每个桶中加进去的水量是 升。 4 (06 年三帆中学考题)有甲、乙两堆煤,如果从甲堆运 12 吨给乙堆,那么两堆煤就一样重。如果从乙堆运 12 吨给甲堆,那么甲堆煤就是乙堆煤的 2 倍。这两堆煤共重( )吨。 5 (03 年人大附中考题)一堆围棋子黑白两种颜色,拿走 15 枚白棋子后,黑子与白子的个数之比为 2:1;再拿走 45 枚黑棋子后,黑子与白子的个数比为 1:5,开始时黑棋子,求白棋子各有多少枚? 【附答案】1 【解】:设方程:设甲成本为 X 元,则乙为 2200-X 元。根据条件我们可以求出列出方程:90%(1+20%)X+(1+15%)(2200-X)-2200=131。解得 X=1200。2 【解】:转化成浓度问题相当于蒸发问题,所以水不变,列方程得:100(1-99%)=(1-98%)X,解得 X=50。方法二:做蒸发的题目,要改变思考角度,本题就应该考虑成“98的干蘑菇加水后得到 99的湿蘑菇” ,这样求出加入多少水份即为蒸发掉的水份,就又转变成“混合配比”的问题了。但要注意,10 千克的标注应该是含水量为 99的重量。将 100 千克按 11 分配,如下图:所以蒸发了 1001/2=50 升水。3 【解】此题的关键是抓住不变量:差不变。这样原来两桶水差 13-8=5 升,往两个桶中加进同样多的水后,后来还是差 5 升,所以后来一桶为 5(7-5)5=12.5,所以加入水量为 4.5 升。4 【解】从甲堆运 12 吨给乙堆两堆煤就一样重说明甲堆比乙堆原来重 122=24 吨,这样乙堆运 12吨给甲堆,说明现在甲乙相差就是 24+24=48 吨,而甲堆煤就是乙堆煤的 2 倍,说明相差 1 份,所以现在甲重 482=96 吨,总共重量为 483=144 吨。5 【解】第二次拿走 45 枚黑棋,黑子与白子的个数之比由 2:1(=10:5)变为 1:5,而其中白棋的数目是不变的,这样我们就知道白棋由原来的 10 份变成现在的 1 份,减少了 9 份。这样原来黑棋=45910=50,白棋=4595+15=40。第九讲 小升初专项训练 比例百分数篇一、小升初考试热点及命题方向分数百分数是小学六年级重点学习的知识点,也是小升初重点考察的知识点,这一部分主要考察三大块,分百应用题;比和比例;经济浓度问题;三块的地位是均等的,在考试中都有可能出现,希望同学们全面复习,而不要厚此薄彼。二、2007 年考点预测07 年的出题方式依然是大题中必然出现一道或者两道和本章内容相关的题目,占的分值权重较大,只要认真复习,掌握解题规律,则可以顺利的拿下这部分分值。三、知识要点分数百分数应用题分数、百分数应用题是小学数学的重要内容,也是小学数学重点和难点之一一方面它是在整数应用题基础上的继续和深化;另一方面,它有其本身的特点和解题规律因此,在这类问题中,数量之间以及“量”、“率”之间的相依关系与整数应用题比较,就显得较为复杂,这就给正确地选择解题方法,正确解答带来一定困难为了学好分数、百分数应用题的解法必须做好以下几方面工作具备整数应用题的解题能力解答整数应用题的基础知识,如概念、性质、法则、公式等仍广泛用于分数、百分数应用题在理解、掌握分数的意义和性质的前提下灵活运用学会画线段示意图线段示意图能直观地揭示“量”与“百分率”之间的对应关系,发现量与百分率之间的隐蔽条件它可以帮助我们在复杂的条件与问题中理清思路,正确地进行分析、综合、判断和推理学会多角度、多侧面思考问题的方法分数百分数应用题的条件与问题之间的关系变化多端,单靠统一的思路模式有时很难找到正确解题方法因此,在解题过程中,要善于掌握对应、假设、转化等多种解题方法,在寻找正确的解题方法同时,不断地开拓解题思路比和比例这一讲主要涉及比例的意义和性质,按比例分配,正反比例等几个知识。在应用题的各种类型中,有一类与数量之间的(正、反)比例关系有关在解答这类应用题时,我们需要对题中各个量之间的关系作出正确的判断成正比或反比的量中都有两种相关联的量一种量(记作 x)变化时另一种量(记作 y)也随着变化与这两个量联系着,有一个不变的量(记为 k) 。在判断变量 x 与 y 是否成正、反比例时,我们要紧紧抓住这个不变量 k如:希望考入重点中学?奥数网是我们成就梦想的地方!深刻理解公式的用法!成正比例;如果 k 是 y 与 x 的积,即在 x 变化时,y 与 x 的积不变:xyk,那么 y 与 x 成反比例如果这两个关系式都不成立,那么 y 与 x 不成(正和反)比例经济浓度问题这一节的内容与生活实际联系很紧密,在浓度问题中要理解好溶剂、溶质、溶液、浓度这几个量之间的关系。而经济问题中,则要恰当处理好成本、售价、利润、利润率这几个量的关系。四、典型例题解析1 分数百分数应用题【例 1】 ()某班有学生 48 人,女生占全班的 37.5,后来又转来女生若干人,这时人数恰好是占全班人数的 40,问转来几名女生?【解】这是一道变换单位“1”的分数应用题,需抓住男生人数这个不变量,如果按浓度问题做,就简单多了。浓度差之比 124 重量之比 241 48241=2 人方法二:男生原来有 48(1-37.5)=30,来了女生后男生的人数书不变的,所以后来全班的总人数就是 30(1-40)=50,所以增加的 2 人就是转来的女生人数。【例 2】 ()把一个正方形的一边减少 20,另一边增加 2 米,得到一个长方形.它与原来的正方形面积相等.问正方形的面积是多少?【解】设正方形的边长是“1”.因为长方形与原来的正方形面积相等,一边减少了 20,另一边将增加所以正方形的边长是 2258(米).正方形的面积是 88 64(平方米).【例 3】 ()学校男生人数占 45,会游泳的学生占 54。男生中会游泳的占 72,问在全体学生中不会游泳的女生占百分之几?【解 1】在全体学生中,不会游泳的女生占 33.4.在全体学生中,会游泳的男生占 457232.4.在会游泳的学生中,男生占 32.454100 60在全体学生中,不会游泳的女生占(100-45)-54(1-60)33.4.【解 2】画一个图非常清楚。【例 4】某校四年级原有 2 个班,现在要重新编为 3 个班,将原一班的 1/3 与原二班的 1/4 组成新一班,将原一班的 1/4 与原二班的 1/3 组成新二班,余下的 30 人组成新三班。如果新一班的人数比新二班的人数多 10%,那么原一班有多少人? 【解】:原一班的 1/3 与原二班的 1/4 + 原一班的 1/4 与原二班的 1/3=7/12 总人数,余下 1-7/12=5/12,是 30 人,所以总人数=30/(5/12)=72 人;72-30=42 人,新一班与新二班的人数和为 42 人,新一班的人数比新二班的人数多 10%,新一班人数:新二班人数=11:10,即原一班的(1/3-1/4)=1/12 比原二班的 1/12 多 2 人,原一班比原二班共多 122=24 人,所以,原一班有 24+(72-24)/2=48 人。答:原一班有 48 人。2 比和比例【例 5】 ()一个长方形长与宽的比是 14:5,如果长减少 13 厘米,宽增加 13 厘米,则面积增加182 平方厘米,那么原长方形面积是多少平方厘米?画出图便于解题:【解 1】:BC 的长:1821314(厘米),BD 的长:141327(厘米),从图中看出 AB 长就是原长方形的宽,AD 与 AB 的比是 145,AB 与 BD 的比是 5(145)59,原长方形面积是 4215630(平方厘米)。答:原长方形面积是 630 平方厘米。【解 2】:设原长方形长为 14x,宽为 5x由图分析得方程(14x13)135x13182,9x27,x3。则原长方形面积(143)(53 )630(平方厘米) 。【拓展】已知长方形的周长为 346 米,若边长分别增加 2 米,则面积增加多少平方米?设两边长分别为 a、b,这样增加的面积我们可以分为一个 22 的正方形,一个 2a 的长方形,一个2b 的长方形,所以增加的面积就是 2(a+b)+22=350 平方米。【例 6】 ()有正方形和长方形两种不同的纸板,正方形纸板总数与长方形纸板总数之比为 25。现在将这些纸板全部用来拼成横式和竖式两种无盖纸盒,其中竖式盒由一块正方形纸板做底面,四块长方形纸板做侧面(左下图) ,横式盒由一块长方形纸板做底面,两块长方形和两块正方形纸板做侧面(右下图) ,那么做成的竖式纸盒与横式纸盒个数之比是多少?【解】43。设竖式纸盒有 a 个,横式纸盒有 b 个,则共用长方形纸板(4a3b)块,正方形纸板(a2b)块。根据题意有:(a2b)(4a3b)2 5,即 5(a2b)2(4a3b) ,解得 ab43。【例 7】 ()某学校入学考试,参加的男生与女生人数之比是 43.结果录取 91 人,其中男生与女生人数之比是 85.未被录取的学生中,男生与女生人数之比是 34.问报考的共有多少人?【解 1】报考人数是 119 人,录取学生中男生:91 =56 人,女:91-56=35(人).85先将未录取的人数之比 3:4 变成 4:4 ,又有 56 42(人)334未录取男生 4 3= 12(人) ,女生 16(人) 。报考人数是 (56+ 12)+ (35 + 16)= 119(人) 。【解 2】(56+3x):(35+4x)=4:3 得:X=4未录取男生 4 3= 12(人) ,女生 16(人) 。报考人数是 (56+ 12)+ (35 + 16)= 119(人) 。【例 8】 ()幼儿园大班和中班共有 32 名男生,18 名女生。已知大班男生数与女生数的比为 5:3,中班中男生数与女生数的比为 2:1,那么大班有女生多少名? 【解】方法一:鸡兔同笼思 路:由于男女生有比例关系,而且知道总数,所以我们可以用鸡兔同笼。解:假设 18 名女生全部是大班,则 大班男生数:女生数=5:3=30:18,即男生应有 30 人, 实际男生有 32 人,32-30=2,相差 2 个人; 中班男生数:女生数=2:1=6:3, 以 3 个中班女生换 3 个大班女生,每换一组可增加 1 个男生,需要换 2 组; 所以,大班女生有 18-32=12 个。 答:大班有女生 12 名。方法二:份数思 路 :可以把中班女生数看作“1”份,那么中班男生数为 2 份从而大班中的男生数为 322 份,大班里的女生人数是 181 份根据题意有(322 份):(181 份)=5:3,只要求出 1 份的数目即可。解:设中班女生数看作“1” ,(322 份):(181 份)=5:3,求出一份是 6 人所以大班的女生则有 186=12 人答:大班有女生 12 名。3 经济浓度问题【例 9】()某商店进了一批笔记本,按 30的利润定价.当售出这批笔记本的 80后,为了尽早销完,商店把这批笔记本按定价的一半出售.问销完后商店实际获得的利润百分数是多少?【解】设这批笔记本的成本是“1”.因此定价是 1(1+ 30)1.3.其中80的卖价是 1.380,20的卖价是 1.3220.因此全部卖价是 1.380 1.3 220 1.17.实际获得利润的百分数是 1.171 0.1717.【例 10】 ()A,B,C 三个试管中各盛有 10 克、20 克、30 克水。把某种浓度的盐水 10 克倒入 A 中,混合后取出 10 克倒入 B 中,混合后又从 B 中取出 10 克倒入 C 中。现在 C 中盐水浓度是 0.5。问最早倒入 A 中的盐水浓度是多少?【解】最早倒入 A 中的盐水浓度为 12。B 中盐水的浓度是(30 10)0.5 10100=2。现在 A 中盐水的浓度是(20 10)2 10100 6。最早倒入 A 中的盐水浓度为 (1010)6 10=12。【例 11】 ()小明到商店买红、黑两种笔共 66 支。红笔每支定价 5 元,黑笔每支定价 9 元。由于买的数量较多,商店就给予优惠,红笔按定价 85付钱,黑笔按定价 80付钱,如果他付的钱比按定价少付了 18,那么他买了红笔多少支?【来源】北京市第 14 届迎春杯数学竞赛初赛试题【解】浓度倒三角的妙用:红笔按 85优惠,黑笔按 80优惠,结果少付 18,相当于按 82优惠,可按浓度问题进行配比。与其他题不同的地方在于红、黑两种笔的单价不同,要把这个因素考虑进去。然后就可以按比例分配这 66支笔了。【例 12】制鞋厂生产的皮鞋按质量共分 10 个档次,生产最低档次(即第 1 档次)的皮鞋每双利润为 24元。每提高一个档次,每双皮鞋利润增加 6 元。最低档次的皮鞋每天可生产 180 双,提高一个档次每天将少生产 9 双皮鞋。按天计算,生产哪个档次的皮鞋所获利润最大?最大利润是多少元?【解】第 9 档次;7776 元。由题意,生产第 n(n=1 ,2,10)档次的皮鞋,每天生产的双数为 1899n=9(21n)双,每双利润为 186n=6(3n )(元),所以每天获利润6(3n)9 (21n)=54(3n)(21n)元。两个数的和一定时,这两个数越接近,这两个数的乘积越大。上式中,因为(3+n)与(21n)的和是24,而 n=9 时,(3n )与(21n )都等于 12,所以每天生产第 9 档次的皮鞋所获利润最大,最大利润是 54(39)(219)7776(元)。小结本讲主要接触到以下几种典型题型:1)分数百分数应用题 参见例 1,2,3,42)比和比例 参见例 5,6,7,83)经济浓度问题 参见例 9,10,11,12【课外知识】勾股定理勾股定理:在任何一个直角三角形中,两条直角边的平方之和一定等于斜边的平方。这个定理在中国又称为“商高定理“,在外国称为“毕达哥拉斯定理“。为什么一个定理有这么多名称呢?商高是公元前十一世纪的中国人。当时中国的朝代是西周,是奴隶社会时期。在中国古代大约是战国时期西汉的数学著作周髀算经中记录着商高同周公的一段对话。商高说:“故折矩,勾广三,股修四,经隅五。“什么是“勾、股“呢?在中国古代,人们把弯曲成直角的手臂的上半部分称为“勾“,下半部分称为“股“。商高那段话的意思就是说:当直角三角形的两条直角边分别为 3(短边)和 4(长边)时,径隅(就是弦)则为 5。以后人们就简单地把这个事实说成“勾三股四弦五“。由于勾股定理的内容最早见于商高的话中,所以人们就把这个定理叫作“商高定理“。毕达哥拉斯(Pythagoras)是古希腊数学家,他是公元前五世纪的人,比商高晚出生五百多年。希腊另一位数学家欧几里德(Euclid,是公元前三百年左右的人)在编著几何原本时,认为这个定理是毕达哥达斯最早发现的,所以他就把这个定理称为“毕达哥拉斯定理“,以后就流传开了。关于勾股定理的发现, 周髀算经上说:“故禹之所以治天下者,此数之所由生也。“此数“指的是“勾三股四弦五“,这句话的意思就是说:勾三股四弦五这种关系是在大禹治水时发现的。勾股定理的应用非常广泛。我国战国时期另一部古籍路史后记十二注中就有这样的记载:“禹治洪水决流江河,望山川之形,定高下之势,除滔天之灾,使注东海,无漫溺之患,此勾股之所系生也。“这段话的意思是说:大禹为了治理洪水,使不决流江河,根据地势高低,决定水流走向,因势利导,使洪水注入海中,不再有大水漫溺的灾害,是应用勾股定理的结果。作业题 (注:作业题-例题类型对照表,供参考)题 1类型 1;题 2,4,5,6,8类型 4;题 3,7类型 5 1、 ()某中学,上年度高中男、女生共 290 人.这一年度高中男生增加 4,女生增加 5,共增加13 人.本年度该校有男、女生各多少人?【解】男生 156 人,女生 147 人。如果女生也是增加 4,这样增加的人数是 290411.6(人).比 13 人少 1.4 人.因此上年度是 1.4(5- 4)140(人).本年度女生有140(15) 147(人).2、 ()在下图中 AB,AC 的长度是 15,BC 的长度是 9.把 BC 折过去与 AC 重合,B 点落在 E 点上,求三角形 ADE 与三角形 ABC 面积之比.【解】14. 三角形 ADE 与三角形 EDC 面积之比是 (15-9)9.3、 ()成本 0.25 元的练习本 1200 本,按 40的利润定价出售。当销掉 80后,剩下的练习本打折扣出售,结果获得的利润是预定的 86,问剩下的练习本出售时是按定价打了什么折扣?【解】打了 8 折.先销掉 80,可以获得利润 0.2540120080 96.按 86获得利润 0.2540120086=103.2.因此,出售剩下的 20,要获得利润103.2-96=7.2(元),每本需要获得利润7.2(1200 20)= 0.03(元)。现在售价是 0.25 0.03 0.28(元),定价是0.25(1 40) 0.35(元)。售价是定价的 0.28 0.35=80。4、 ()甲乙两人各有一些书,甲比乙多的数量恰好是两人总数的 ,如果甲给乙 20 本,那么乙比14甲多的数量恰好是两人总数的 。那么他们共有多少本书?16【解】甲比乙多的数量恰好是两人总数的 ,把差 1 份,和 4 份,用和差问题来算一下,大数为:(4+1)14/2=2.5,小数:(4-1)/2=1.5, ,得甲是 2.5 份,乙是 1.5 份,甲与乙的比是 5:3.同理,甲给乙 20 本后,甲与乙的比是 5:7,思考一下为什么是 5:7,不要把前后项颠倒了。因为甲给乙20 本书,甲减少多少,乙就增加多少,甲乙两人共有书的总数不变,我们就把和的份数统一一下,在这里 8 与 12 的最小公倍数是 24 份:5:3=15:95:7=10:14观察比较甲从 15 份变为 10 份,是因为少了 20 本书,因此每份是 4 本,共有书就为 4(15+9)=96 本。5、 ()甲、乙、丙三位同学共有图书 108 本.乙比甲多 18 本,乙与丙的图书数之比是 54.求甲、乙、丙三人所有的图书数之比.【解】354.(108+18)(5 + 5+ 4)= 9甲、乙、丙三人图书数之比是(95-18)(95)(94)=354。6、 ()一个容器内已注满水,有大、中、小三个球。第一次把小球沉入水中;第二次把小球取出,把中球沉入水中;第三
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 时间管理课件导入模板
- 安全事故预防培训
- 大学生心理培训大纲
- 时间位移新课标课件
- 2025版社区建设捐赠合同范本
- 二零二五年度城市绿化工程连带责任保证方式担保合同
- 2025版建筑垃圾运输合同范本环境友好型运输
- 2025版电动伸缩门研发、生产及销售合作协议
- 二零二五年度购物卡线上线下跨区域合作合同
- 二零二五年度高端白酒品牌独家代理销售合同
- 中国农业银行笔试题库(含答案)
- GA 1808-2022军工单位反恐怖防范要求
- GB/T 4745-2012纺织品防水性能的检测和评价沾水法
- 北京理工大学应用光学课件(大全)李林
- 院前急救120出诊流程图
- 残疾人基本康复服务目录(2021年版)
- 全员安全生产责任制度
- 工作桌面pad相关gec3000通讯协议v2
- 正压式呼吸器使用与管理规范
- GB∕T 37004-2018 国家物品编码通用导则
- 《大学物理》说课课件
评论
0/150
提交评论