毕业设计说明书.doc

开合螺母上加工孔的车床夹具-常州机电开合螺母加工工艺及夹具设计【车夹具全套设计及CAD图纸通过答辩】

收藏

压缩包内文档预览:(预览前20页/共29页)
预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图
编号:1049668    类型:共享资源    大小:8.70MB    格式:RAR    上传时间:2017-03-09 上传人:机****料 IP属地:河南
15
积分
关 键 词:
螺母 加工 车床 夹具 常州 机电 电机 工艺 设计 全套 cad 图纸 通过 答辩
资源描述:


内容简介:
附录二 :中文翻译 通过夹具布局设计和夹紧力的优化控制变形摘 要工件变形必须控制在数值控制机械加工过程之中。夹具布局和夹紧力是影响加工变形程度和分布的两个主要方面。在本文提出了一种多目标模型的建立,以减低变形的程度和增加均匀变形分布。有限元方法应用于分析变形。遗传算法发展是为了解决优化模型。最后举了一个例子说明,一个令人满意的结果被求得, 这是远优于经验之一的。多目标模型可以减少加工变形有效地改善分布状况。关键词:夹具布局;夹紧力; 遗传算法;有限元方法1 引言夹具设计在制造工程中是一项重要的程序。这对于加工精度是至关重要。一个工件应约束在一个带有夹具元件,如定位元件,夹紧装置,以及支撑元件的夹具中加工。定位的位置和夹具的支力,应该从战略的设计,并且适当的夹紧力应适用。该夹具元件可以放在工件表面的任何可选位置。夹紧力必须大到足以进行工件加工。通常情况下,它在很大程度上取决于设计师的经验,选择该夹具元件的方案,并确定夹紧力。因此,不能保证由此产生的解决方案是某一特定的工件的最优或接近最优的方案。因此,夹具布局和夹紧力优化成为夹具设计方案的两个主要方面。 定位和夹紧装置和夹紧力的值都应适当的选择和计算,使由于夹紧力和切削力产生的工件变形尽量减少和非正式化。 夹具设计的目的是要找到夹具元件关于工件和最优的夹紧力的一个最优布局或方案。在这篇论文里, 多目标优化方法是代表了夹具布局设计和夹紧力的优化的方法。 这个观点是具有两面性的。一,是尽量减少加工表面最大的弹性变形; 另一个是尽量均匀变形。 ANSYS软件包是用来计算工件由于夹紧力和切削力下产生的变形。遗传算法是MATLAB的发达且直接的搜索工具箱,并且被应用于解决优化问题。最后还给出了一个案例的研究,以阐述对所提算法的应用。2 文献回顾随着优化方法在工业中的广泛运用,近几年夹具设计优化已获得了更多的利益。夹具设计优化包括夹具布局优化和夹紧力优化。King 和 Hutter提出了一种使用刚体模型的夹具-工件系统来优化夹具布局设计的方法。DeMeter也用了一个刚性体模型,为最优夹具布局和最低的夹紧力进行分析和综合。他提出了基于支持布局优化的程序与计算质量的有限元计算法。李和melkote用了一个非线性编程方法和一个联络弹性模型解决布局优化问题。两年后, 他们提交了一份确定关于多钳夹具受到准静态加工力的夹紧力优化的方法。他们还提出了一关于夹具布置和夹紧力的最优的合成方法,认为工件在加工过程中处于动态。相结合的夹具布局和夹紧力优化程序被提出,其他研究人员用有限元法进行夹具设计与分析。蔡等对menassa和devries包括合成的夹具布局的金属板材大会的理论进行了拓展。秦等人建立了一个与夹具和工件之间弹性接触的模型作为参考物来优化夹紧力与,以尽量减少工件的位置误差。Deng和melkote 提交了一份基于模型的框架以确定所需的最低限度夹紧力,保证了被夹紧工件在加工的动态稳定。大部分的上述研究使用的是非线性规划方法,很少有全面的或近全面的最优解决办法。所有的夹具布局优化程序必须从一个可行布局开始。此外,还得到了对这些模型都非常敏感的初步可行夹具布局的解决方案。夹具优化设计的问题是非线性的,因为目标的功能和设计变量之间没有直接分析的关系。例如加工表面误差和夹具的参数之间(定位、夹具和夹紧力)。以前的研究表明,遗传算法( GA )在解决这类优化问题中是一种有用的技术。吴和陈用遗传算法确定最稳定的静态夹具布局。石川和青山应用遗传算法确定最佳夹紧条件弹性工件。vallapuzha在基于优化夹具布局的遗传算法中使用空间坐标编码。他们还提出了针对主要竞争夹具优化方法相对有效性的广泛调查的方法和结果。这表明连续遗传算法取得最优质的解决方案。krishnakumar和melkote 发展了一个夹具布局优化技术,用遗传算法找到夹具布局,尽量减少由于在整个刀具路径的夹紧和切削力造成的加工表面的变形。定位器和夹具位置被节点号码所指定。krishnakumar等人还提出了一种迭代算法,尽量减少工件在整个切削过程之中由不同的夹具布局和夹紧力造成的弹性变形。Lai等人建成了一个分析模型,认为定位和夹紧装置为同一夹具布局的要素灵活的一部分。Hamedi 讨论了混合学习系统用来非线性有限元分析与支持相结合的人工神经网络( ANN )和GA。人工神经网络被用来计算工件的最大弹性变形,遗传算法被用来确定最佳锁模力。Kumar建议将迭代算法和人工神经网络结合起来发展夹具设计系统。Kaya用迭代算法和有限元分析,在二维工件中找到最佳定位和夹紧位置,并且把碎片的效果考虑进去。周等人。提出了基于遗传算法的方法,认为优化夹具布局和夹紧力的同时,一些研究没有考虑为整个刀具路径优化布局。一些研究使用节点数目作为设计参数。一些研究解决夹具布局或夹紧力优化方法,但不能两者都同时进行。 有几项研究摩擦和碎片考虑进去了。碎片的移动和摩擦接触的影响对于实现更为现实和准确的工件夹具布局校核分析来说是不可忽视的。因此将碎片的去除效果和摩擦考虑在内以实现更好的加工精度是必须的。在这篇论文中,将摩擦和碎片移除考虑在内,以达到加工表面在夹紧和切削力下最低程度的变形。一多目标优化模型被建立了。一个优化的过程中基于GA和有限元法提交找到最佳的布局和夹具夹紧力。最后,结果多目标优化模型对低刚度工件而言是比较单一的目标优化方法、经验和方法。3 多目标优化模型夹具设计一个可行的夹具布局必须满足三限制。首先,定位和夹紧装置不能将拉伸势力应用到工件;第二,库仑摩擦约束必须施加在所有夹具-工件的接触点。夹具元件-工件接触点的位置必须在候选位置。为一个问题涉及夹具元件-工件接触和加工负荷步骤,优化问题可以在数学上仿照如下: 这里的表示加工区域在加工当中j次步骤的最高弹性变形。其中是的平均值;是正常力在i次的接触点;是静态摩擦系数;fhi是切向力在i次的接触点;pos(i)是i次的接触点;是可选区域的i次接触点;整体过程如图1所示,一要设计一套可行的夹具布局和优化的夹紧力。最大切削力在切削模型和切削力发送到有限元分析模型中被计算出来。优化程序造成一些夹具布局和夹紧力,同时也是被发送到有限元模型中。在有限元分析座内,加工变形下,切削力和夹紧力的计算方法采用有限元方法。根据某夹具布局和变形,然后发送给优化程序,以搜索为一优化夹具方案。图1 夹具布局和夹紧力优化过程4 夹具布局设计和夹紧力的优化4.1 遗传算法遗传算法( GA )是基于生物再生产过程的强劲,随机和启发式的优化方法。基本思路背后的遗传算法是模拟“生存的优胜劣汰“的现象。每一个人口中的候选个体指派一个健身的价值,通过一个功能的调整,以适应特定的问题。遗传算法,然后进行复制,交叉和变异过程消除不适宜的个人和人口的演进给下一代。人口足够数目的演变基于这些经营者引起全球健身人口的增加和优胜个体代表全最好的方法。遗传算法程序在优化夹具设计时需夹具布局和夹紧力作为设计变量,以生成字符串代表不同的布置。字符串相比染色体的自然演变,以及字符串,它和遗传算法寻找最优,是映射到最优的夹具设计计划。在这项研究里,遗传算法和MATLAB的直接搜索工具箱是被运用的。 收敛性遗传算法是被人口大小、交叉的概率和概率突变所控制的 。只有当在一个人口中功能最薄弱功能的最优值没有变化时,nchg达到一个预先定义的价值ncmax ,或有多少几代氮,到达演化的指定数量上限nmax, 没有遗传算法停止。有五个主要因素,遗传算法,编码,健身功能,遗传算子,控制参数和制约因素。 在这篇论文中,这些因素都被选出如表1所列。表1 遗传算法参数的选择由于遗传算法可能产生夹具设计字符串,当受到加工负荷时不完全限制夹具。这些解决方案被认为是不可行的,且被罚的方法是用来驱动遗传算法,以实现一个可行的解决办法。1夹具设计的计划被认为是不可行的或无约束,如果反应在定位是否定的。在换句话说,它不符合方程(2)和(3)的限制。罚的方法基本上包含指定计划的高目标函数值时不可行的。因此,驱动它在连续迭代算法中的可行区域。对于约束(4),当遗传算子产生新个体或此个体已经产生,检查它们是否符合条件是必要的。真正的候选区域是那些不包括无效的区域。在为了简化检查,多边形是用来代表候选区域和无效区域的。多边形的顶点是用于检查。“inpolygon ”在MATLAB的功能可被用来帮助检查。4.2 有限元分析ANSYS软件包是用于在这方面的研究有限元分析计算。有限元模型是一个考虑摩擦效应的半弹性接触模型,如果材料是假定线弹性。如图2所示,每个位置或支持,是代表三个正交弹簧提供的制约。图2 考虑到摩擦的半弹性接触模型在x , y和z 方向和每个夹具类似,但定位夹紧力在正常的方向。弹力在自然的方向即所谓自然弹力,其余两个弹力即为所谓的切向弹力。接触弹簧刚度可以根据向赫兹接触理论计算如下:随着夹紧力和夹具布局的变化,接触刚度也不同,一个合理的线性逼近的接触刚度可以从适合上述方程的最小二乘法得到。连续插值,这是用来申请工件的有限元分析模型的边界条件。在图3中说明了夹具元件的位置,显示为黑色界线。每个元素的位置被其它四或六最接近的邻近节点所包围。图3 连续插值这系列节点,如黑色正方形所示,是(37,38,31和30 ),(9,10 ,11 , 18,17号和16号)和( 26,27 ,34 , 41,40和33 )。这一系列弹簧单元,与这些每一个节点相关联。对任何一套节点,弹簧常数是:这里,kij 是弹簧刚度在的j -次节点周围i次夹具元件,Dij 是i次夹具元件和的J -次节点周围之间的距离,ki是弹簧刚度在一次夹具元件位置,i 是周围的i次夹具元素周围的节点数量为每个加工负荷的一步,适当的边界条件将适用于工件的有限元模型。在这个工作里,正常的弹簧约束在这三个方向(X , Y , Z )的和在切方向切向弹簧约束,(X , Y )。夹紧力是适用于正常方向(Z)的夹紧点。整个刀具路径是模拟为每个夹具设计计划所产生的遗传算法应用的高峰期的X ,Y ,z切削力顺序到元曲面,其中刀具通行证。在这工作中,从刀具路径中欧盟和去除碎片已经被考虑进去。在机床改变几何数值过程中,材料被去除,工件的结构刚度也改变。 因此,这是需要考虑碎片移除的影响。有限元分析模型,分析与重点的工具运动和碎片移除使用的元素死亡技术。在为了计算健身价值,对于给定夹具设计方案,位移存储为每个负载的一步。那么,最大位移是选定为夹具设计计划的健身价值。遗传算法的程序和ANSYS之间的互动实施如下。定位和夹具的位置以及夹紧力这些参数写入到一个文本文件。那个输入批处理文件ANSYS软件可以读取这些参数和计算加工表面的变形。 因此, 健身价值观,在遗传算法程序,也可以写到当前夹具设计计划的一个文本文件。当有大量的节点在一个有限元模型时,计算健身价值是很昂贵的。因此,有必要加快计算遗传算法程序。作为这一代的推移,染色体在人口中取得类似情况。在这项工作中,计算健身价值和染色体存放在一个SQL Server数据库。遗传算法的程序,如果目前的染色体的健身价值已计算之前,先检查;如果不,夹具设计计划发送到ANSYS,否则健身价值观是直接从数据库中取出。啮合的工件有限元模型,在每一个计算时间保持不变。每计算模型间的差异是边界条件,因此,网状工件的有限元模型可以用来反复“恢复”ANSYS 命令。5 案例研究一个关于低刚度工件的铣削夹具设计优化问题是被显示在前面的论文中,并在以下各节加以表述。5.1 工件的几何形状和性能工件的几何形状和特点显示在图4中,空心工件的材料是铝390与泊松比0.3和71Gpa的杨氏模量。外廓尺寸152.4mm127mm*76.2mm.该工件顶端内壁的三分之一是经铣削及其刀具轨迹,如图4 所示。夹具元件中应用到的材料泊松比0.3和杨氏模量的220的合金钢。图4 空心工件5.2 模拟和加工的运作举例将工件进行周边铣削,加工参数在表2中给出。基于这些参数,切削力的最高值被作为工件内壁受到的表面载荷而被计算和应用,当工件处于330.94 n(切)、398.11 N (下径向)和22.84 N (下轴) 的切削位置时。整个刀具路径被26个工步所分开,切削力的方向被刀具位置所确定表2加工参数和条件。5.3 夹具设计方案夹具在加工过程中夹紧工件的规划如图5所示。图5 定位和夹紧装置的可选区域一般来说, 3-2-1定位原则是夹具设计中常用的。夹具底板限制三个自由度,在侧边控制两个自由度。这里,在Y=0mm截面上使用了4个定点(L1,L2 , L3和14 ),以定位工件并限制2自由度;并且在Y=127mm的相反面上,两个压板(C1,C2)夹紧工件。在正交面上,需要一个定位元件限制其余的一个自由度,这在优化模型中是被忽略的。在表3中给出了定位加紧点的坐标范围。表3 设计变量的约束由于没有一个简单的一体化程序确定夹紧力,夹紧力很大部分(6673.2N)在初始阶段被假设为每一个夹板上作用的力。且从符合例5的最小二乘法,分别由4.43107 N/m 和5.47107 N/m得到了正常切向刚度。5.4 遗传控制参数和惩罚函数在这个例子中,用到了下列参数值:Ps=30, Pc=0.85, Pm=0.01, Nmax=100和Ncmax=20.关于f1和的惩罚函数是这里fv可以被F1或代表。当nchg达到6时,交叉和变异的概率将分别改变成0.6和0.1.5.5 优化结果连续优化的收敛过程如图6所示。且收敛过程的相应功能(1)和(2)如图7、图8所示。优化设计方案在表4中给出。图6 夹具布局和夹紧力优化程序的收敛性遗传算法 图7 第一个函数值的收敛图8第二个函数值的收敛性表4 多目标优化模型的结果 表5 各种夹具设计方案结果进行比较,5.6 结果的比较 从单一目标优化和经验设计中得到的夹具设计的设计变量和目标函数值,如表5所示。单一目标优化的结果,在论文中引做比较。在例子中,与经验设计相比较,单一目标优化方法有其优势。最高变形减少了57.5 ,均匀变形增强了60.4 。最高夹紧力的值也减少了49.4 。从多目标优化方法和单目标优化方法的比较中可以得出什么呢?最大变形减少了50.2 ,均匀变形量增加了52.9 ,最高夹紧力的值减少了69.6 。加工表面沿刀具轨迹的变形分布如图9所示。很明显,在三种方法中,多目标优化方法产生的变形分布最均匀。与结果比较,我们确信运用最佳定位点分布和最优夹紧力来减少工件的变形。图10示出了一实例夹具的装配。图9沿刀具轨迹的变形分布图10 夹具配置实例6 结论本文介绍了基于GA和有限元的夹具布局设计和夹紧力的优化程序设计。优化程序是多目标的:最大限度地减少加工表面的最高变形和最大限度地均匀变形。ANSYS软件包已经被用于健身价值的有限元计算。对于夹具设计优化的问题,GA和有限元分析的结合被证明是一种很有用的方法。 在这项研究中,摩擦的影响和碎片移动都被考虑到了。为了减少计算的时间,建立了一个染色体的健身数值的数据库,且网状工件的有限元模型是优化过程中多次使用的。 传统的夹具设计方法是单一目标优化方法或经验。此研究结果表明,多目标优化方法比起其他两种方法更有效地减少变形和均匀变形。这对于在数控加工中控制加工变形是很有意义的。参考文献1、 King LS,Hutter( 1993年) 自动化装配线上棱柱工件最佳装夹定位生成的理论方法。De Meter EC (1995) 优化机床夹具表现的Min - Max负荷模型。2、 De Meter EC (1998) 快速支持布局优化。Li B, Melkote SN (1999) 通过夹具布局优化改善工件的定位精度。3、 Li B, Melkote SN (2001) 夹具夹紧力的优化和其对工件的定位精度的影响。4、 Li B, Melkote SN (1999) 通过夹具布局优化改善工件的定位精度。5、 Li B, Melkote SN (2001) 夹具夹紧力的优化和其对工件定位精度的影响。6、 Li B, Melkote SN (2001) 最优夹具设计计算工件动态的影响。7、 Lee JD, Haynes LS (1987) 灵活装夹系统的有限元分析。8、 Menassa RJ, DeVries WR (1991) 运用优化方法在夹具设计中选择支位。9、 Cai W, Hu SJ, Yuan JX (1996) 变形金属板材的装夹的原则、算法和模拟。10、 Qin GH, Zhang WH, Zhou XL (2005) 夹具装夹方案的建模和优化设计。11、Deng HY, Melkote SN (2006) 动态稳定装夹中夹紧力最小值的确定。12、Wu NH, Chan KC (1996) 基于遗传算法的夹具优化配置方法。13、Ishikawa Y, Aoyama T(1996) 借助遗传算法对装夹条件的优化。14、Vallapuzha S, De Meter EC, Choudhuri S, et al (2002) 一项关于空间坐标对基于遗传算法的夹具优化问题的作用的调查。15、Vallapuzha S, De Meter EC, Choudhuri S, et al (2002) 夹具布局优化方法成效的调查。16、Kulankara K, Melkote SN (2000) 利用遗传算法优化加工夹具的布局。17、Kulankara K, Satyanarayana S, Melkote SN (2002) 利用遗传算法优化夹紧布局和夹紧力。18、Lai XM, Luo LJ, Lin ZQ (2004) 基于遗传算法的柔性装配夹具布局的建模与优化。19、Hamedi M (2005) 通过一种人工神经网络和遗传算法混合的系统设计智能夹具。20、Kumar AS, Subramaniam V, Seow KC (2001) 采用遗传算法固定装置的概念设计。21、Kaya N (2006) 利用遗传算法优化加工夹具的定位和夹紧点。22、Zhou XL, Zhang WH, Qin GH (2005) 遗传算法用于优化夹具布局和夹紧力。23、Kaya N, ztrk F (2003) 碎片位移和摩擦接触的运用对工件夹具布局的校核。62com常州机电职业技术学院 机械加工工序卡 产品型号及规格 图 号 名 称 工艺文件编号 开合螺母 材料牌号及名称 毛坯外型尺寸 型铸造 零件毛重 零件净重 硬 度 设 备 型 号 设 备 名 称 床 专 用 工 艺 装 备 名 称 代 号 专用夹具 机动时间 单件工时定额 每合件数 155 技 术 等 级 冷 却 液 中 工序号 工步号 工 序 及 工 步 内 容 刃 具 量 检 具 切 削 用 量 代 号 名 称 代 号 名称 切削速度(米 /分) 切削深度(毫米) 进给量(毫 米 /转) 转速(转 /分) 30 1 铣 底部 端面 铣刀 卡尺 80 编 制 校 对 会 签 复 制 修改标记 处 数 文件号 签 字 日 期 修改标记 处 数 文件号 签 字 日 期 常州机电职业技术学院 机械加工工序卡 产品型号及规格 图 号 名 称 工艺 文件编号 开合螺母 材料牌号及名称 毛坯外型尺寸 型铸造 零件毛重 零件净重 硬 度 设 备 型 号 设 备 名 称 床 专 用 工 艺 装 备 名 称 代 号 专用夹具 机动时间 单件工时定额 每合件数 155 技 术 等 级 冷 却 液 中 工序号 工步号 工 序 及 工 步 内 容 刃 具 量 检 具 切 削 用 量 代 号 名 称 代 号 名称 切削速度(米 /分) 切削深度(毫米) 进给量(毫 米 /转) 转速(转 /分) 40 1 铣燕尾面 和空刀槽 铣刀 卡尺 80 编 制 校 对 会 签 复 制 修改标记 处 数 文件号 签 字 日 期 修改标记 处 数 文件号 签 字 日 期 常州机电职业技术学院 机械加工工序卡 产品型号及规格 图 号 名 称 工艺文件编号 开合螺母 材料牌号及名称 毛坯外型尺寸 型铸造 零件毛重 零件净重 硬 度 设 备 型 号 设 备 名 称 床 专 用 工 艺 装 备 名 称 代 号 专用夹具 机动时间 单件工时定额 每合件数 155 技 术 等 级 冷 却 液 中 工序号 工步号 工 序 及 工 步 内 容 刃 具 量 检 具 切 削 用 量 代 号 名 称 代 号 名称 切削速度(米 /分) 切削深度(毫米) 进给量(毫 米 /转) 转速(转 /分) 50 1 铣 空刀面 铣刀 卡尺 103 25 编 制 校 对 会 签 复 制 修改标记 处 数 文件号 签 字 日 期 修改标记 处 数 文件号 签 字 日 期 常州机电职业技术学院 机械加工工序卡 产品型号及规格 图 号 名 称 工艺文件编号 开合螺母 材料牌号及名称 毛坯外型尺寸 型铸造 零件毛重 零件净重 硬 度 设 备 型 号 设 备 名 称 床 专 用 工 艺 装 备 名 称 代 号 专用夹具 机动时间 单件工时定额 每合件数 5 技 术 等 级 冷 却 液 中 工序号 工步号 工 序 及 工 步 内 容 刃 具 量 检 具 切 削 用 量 代 号 名 称 代 号 名称 切削速度(米 /分) 切削深度(毫米) 进给量(毫 米 /转) 转速(转 /分) 60 1 钻、扩、铰 2 麻花钻 卡尺 103 25 编 制 校 对 会 签 复 制 修改标记 处 数 文件号 签 字 日 期 修改标记 处 数 文件号 签 字 日 期 常州机电职业技术学院 机械加工工序卡 产品型号及规格 图 号 名 称 工艺文件编号 开合螺母 材料牌号及名称 毛坯外型尺寸 型铸造 零件毛重 零件净重 硬 度 设 备 型 号 设 备 名 称 床 专 用 工 艺 装 备 名 称 代 号 专用夹具 机动时间 单件工时定额 每合件数 155 技 术 等 级 冷 却 液 中 工序号 工步号 工 序 及 工 步 内 容 刃 具 量 检 具 切 削 用 量 代 号 名 称 代 号 名称 切削速度(米 /分) 切削深度(毫米) 进给量(毫 米 /转) 转速(转 /分) 70 1 车 40 孔 及端面倒角 车刀 卡尺 103 25 编 制 校 对 会 签 复 制 修改标记 处 数 文件号 签 字 日 期 修 改标记 处 数 文件号 签 字 日 期 购买后包含有 纸和论文 ,咨询 常州机电职业技术学院 毕业设计(论文)说明书 作 者: 学 号: 系 部: 专 业: 题 目: 开合螺母 加工工艺及夹具设计 指导者: 评阅者: 年 月 购买后包含有 纸和论文 ,咨询 I 毕业设计(论文)中文摘要 本设计 开合螺母 零件加工过程的基础 设计的夹具设计 。主要 加工部位是平面和 孔加工。在一般情况下,确保比保证精密加工孔很容易。因此,设计遵循的原则 是先加工面后加工孔 表面。 在零件的夹具设计中,主要是根据零件加工工序要求,分析应限的自由度数,进而根据零件的表面特征选定定位元件,再分析所选定位元件能否限定应限自由度。确定了定位元件后还需要选择夹紧元件,最后就是确定专用夹具的结构形式。 关键词 : 开合螺母 零件 ;工艺;夹具; 购买后包含有 纸和论文 ,咨询 业设计(论文)外文摘要 购买后包含有 纸和论文 ,咨询 V of of In to is In of to of of of to of be be of to is to of 购买后包含有 纸和论文 ,咨询 目 录 1 零件的结构分析 . 1 件的工艺分析 . 1 件的工艺要求 . 1 2 工艺规程设计 . 1 工工艺过程 . 1 定各表面加工方案 . 2 响 加工方法的因素 . 2 工方案的选择 . 2 定定位基准 . 3 基准的选择 . 3 基准选择的原则 . 4 艺路线的拟订 . 4 序的合理组合 . 4 序的集中与分散 . 5 工阶段的划分 . 6 工工艺路线方案的比较 . 7 件的偏差,加工余量,工序尺寸及毛坯尺寸的确定 . 8 坯的结构工艺要求 . 8 件的偏差计算 . 9 确定切削用量及工时定额 . 9 3 车中心孔夹具设计 . 17 床夹具设计要求说明 . 17 床夹具的设计要点 . 18 位机构 . 20 紧机构 . 20 件的车床夹具的加工误差分析 . 21 定夹具体结构尺寸和 总体结构 . 22 件的车床专用夹具简单使用说明 . 23 结 论 . 24 致 谢 . 25 参考文献 . 26 购买后包含有 纸和论文 ,咨询 I 购买后包含有 纸和论文 ,咨询 买后包含有 纸和论文 ,咨询 买后包含有 纸和论文 ,咨询 1 零件的结构分析 件的工艺分析 泵体 是一个很重要的零件,因为其零件尺寸比较小,结构形状较复杂,但其加工孔和底面的精度要求较高,此外还有 泵体小端面 端要求加工,对精度要求也很高。零件 的底面、 中心 孔 40粗糙度要求都是 所以都要求精加工。其 中心孔 40 有 同轴度 公差要求因为其尺寸精度、几何形状精度和相互位置精度,以及各表面的表面质量均影响机器或部件的装配质量,进而影响其性能与工作寿命,因此它们的加工是非常关键和重要的。 件的工艺要求 一个好的结构不但要应该达到设计要求,而且要有好的机械加工工艺性,也就是要有加工的可能性,要便于加工,要能够保证加工质量,同时使加工的劳动量最小。而设计和工艺是密切相关的,又是相辅相成的。设计者要考虑加工工艺问题。工艺师要考虑如何从工艺上保证设计的要求。 该 加工有 七个 加工 表面 :平面加工包括 零件 底面、 底部 平面;孔系加工包括 大、小头孔、小孔。 以平面为主 有: 零件 底面的粗、精铣加工,其粗糙度要求是 a ; 泵体小 端面 的粗、精铣加工,其粗糙度要求是 a 。 孔系加工有 : 40、精镗加工 ,其表面粗糙度 为 a ; 12孔 钻铰加工, a 零件 毛坯的选择 铸造 ,因为生产率很高,所以可以免去每次造型 。 单边余量一般在 13结构细密,能承受较大的压力,占用生产的面积较小。因其年产量是中批量生产 。 上面主要是对零件零件的结构、加工精度和主要加工表面进行了分析,选择了其毛坯的的制造方法为铸造和中批的批量生产方式,从而为工艺规程设计提供了必要的准备。 2 工艺规程设计 工工艺过程 由以上分析可知, 该 零件 零件的主要加工表面是平面、 孔系。一般来说,保证平面的加工精度要比保证孔系的加工精度容易。因此,对于 零件 来说,加工过程中的主要问题是保证孔的尺寸精度及位置精度,处理好孔和平面之间的相互关系 以 各尺寸精度。 购买后包含有 纸和论文 ,咨询 由上面的一些技术条件分析得知: 零件 的尺寸精度,形状精度以及位置关系精度要求都 不是很高,这样对加工要求也就不是很高。 定各表面加工方案 一个好的结构不但应该达到设计要求,而且要有好的机械加工工艺性,也就是要有加工的可能性,要便于加工,要能保证加工的质量,同时使加工的劳动量最小。设计和工艺是密切相关的,又是相辅相成的。对于我们设计 零件 的加工工艺来说,应选择能够满足平面孔系和 孔 加工精度要求的加工方法及设备。除了从加工精度和加工效率两方面考虑以外,也要适当考虑经济因素。在满足精度要求及生产率的条件下,应选择价格较底的机床。 响 加工方法的因素 要考虑加工表面的精度和表面质量要求,根据各加工表面的技术要求,选择加工方法及分几次加工。 根据生产类型选择,在大批量生产中可专用的高效率的设备。在单件小批量生产中则常用通用设备和一般的加工方法。如、柴油机连杆小头孔的加工 ,在小批量生产时,采用钻、扩、铰加工方法;而在大批量生产时采用拉削加工。 要考虑被加工材料的性质,例如:淬火钢必须采用磨削或电加工;而有色金属由于磨削时容易堵塞砂轮,一般都采用精细车削,高速精铣等。 要考虑工厂或车间的实际情况,同时也应考虑不断改进现有加工方法和设备,推广新技术,提高工艺水平。 此外,还要考虑一些其它因素,如加工表面物理机械性能的特殊要求,工件形状和重量等。 选择加工方法一般先按这个零件主要 表面的技术要求来选定最终加工方法。再选择前面各工序的加工方法,如加工某一轴的主要外圆面,要求公差为 面粗糙度为 m,并要求淬硬时,其最终工序选用精度,前面准备工序可为粗车 半精车 淬火 粗磨。 工方案的选择 由参考文献 3表 12 可以确定,平面的加工方案为:粗铣 精铣( 79T ),般不淬硬的平面,精铣的粗糙度可以较小。 购买后包含有 纸和论文 ,咨询 由参考文献 3表 11确定, 40选择孔的加方案序为:粗镗 精镗。 12 小孔 钻铰 孔加工方法: 因为孔的表面粗糙度的要求 a ,所以我们采用钻 扩 铰的加工方法。 小头端面的加工方法是: 因 孔 两侧面表面粗糙度的要求较高,为 a ,所以我们采用粗铣 精铣。 定定位基准 基准的选择 选择粗基准时,考虑的重点是如何保证各加工表面有足够的余量,使不加工表面与加工表面间的尺寸、位子符合图纸要求。 粗基准选择应当满足以下要求: 粗基准的选择应以加工表面为粗基准。目的是为了保证加工面与不加工面的相互位置关系精度。如果工件上表面上有好几个不需加工的表面,则应选择其中与加工表面的相互位置精度要求较高的表面作为粗基准。以求壁厚均匀、外形对称、少装夹等。 选择加工余量要求均匀的重要表面作为粗基准。例如:机床床身导轨面是其余量要求均匀的 重要表面。因而在加工时选择导轨面作为粗基准,加工床身的底面,再以底面作为精基准加工导轨面。这样就能保证均匀地去掉较少的余量,使表层保留而细致的组织,以增加耐磨性。 应选择加工余量最小的表面作为粗基准。这样可以保证该面有足够的加工余量。 应尽可能选择平整、光洁、面积足够大的表面作为粗基准,以保证定位准确夹紧可靠。有浇口、冒口、飞边、毛刺的表面不宜选作粗基准,必要时需经初加工。 要从保证孔与孔、孔与平面、平面与平面之间的位置,能保证 零件 在整个加 工过程中基本上都能用统一的基准定位。从 零件 零件图分析可知,主要是选择加工 零件 底面的装夹定位面为其加工粗基准。 购买后包含有 纸和论文 ,咨询 基准选择的原则 基准重合原则。即尽可能选择设计基准作为定位基准。这样可以避免定位基准与设计基准不重合而引起的基准不重合误差。 基准统一原则,应尽可能选用统一的定位基准。基准的统一有利于保证各表面间的位置精度,避免基准转换所带来的误差,并且各工序所采用的夹具比较统一,从而可减少夹具设计和制造工作。例如:轴类零件常用顶针孔作 为定位基准。车削、磨削都以顶针孔定位,这样不但在一次装夹中能加工大多书表面,而且保证了各外圆表面的同轴度及端面与轴心线的垂直度。 互为基准的原则。选择精基准时,有时两个被加工面,可以互为基准反复加工。例如:对淬火后的齿轮磨齿,是以齿面为基准磨内孔,再以孔为基准磨齿面,这样能保证齿面余量均匀。 自为基准原则, 有些精加工或光整加工工序要求余量小而均匀,可以选择加工表面本身为基准。例如:磨削机床导轨面时,是以导轨面找正定位的。此外,像拉孔在无心磨床上磨外圆等,都是自为基准的例子。 此外,还应选择工件上精度高。尺寸较大的表面为精基准,以保证定位稳固可靠。并考虑工件装夹和加工方便、夹具设计简单等。 要从保证孔与孔、孔与平面、平面与平面之间的位置,能保证 零件 在整个加工过程中基本上都能用统一的基准定位。从 零件 零件图分析可知,它的底平面,适于作精基准使用。但用一个平面和一个孔定位限制工件自由度不够,如果使用典型的一面两孔定位方法,则可以满足整个加工过程中基本上都采用统一的基准定位的要求。至于两侧面,因为是非加工表面,所以也可以用 44 的孔为加工基准。 选择精基准的原则时,考虑的重点是有利于保证工件的加工精度并使装夹准。 艺路线的拟订 对于中批量生产的零件,一般总是首先加工出统一的基准。 零件 的加工的第一个工序也就是加工统一的基准。具体安排是先以孔和面定位粗、精加工 零件 底面 底部 平面。 后续工序安排应当遵循粗精分开和先面后孔的原则。 序的合理组合 确定加工方法以后,就按生产类型、零件的结构特点、技术要求和机床设备等购买后包含有 纸和论文 ,咨询 具体生产条件确定工艺过程的工序数。确定工序数的基本原则: 工序分散原则 工序内容简单,有利选择 最合理的切削用量。便于采用通用设备。简单的机床工艺装备。生产准备工作量少,产品更换容易。对工人的技术要求水平不高。但需要设备和工人数量多,生产面积大,工艺路线长,生产管理复杂。 工序集中原则 工序数目少,工件装,夹次数少,缩短了工艺路线,相应减少了操作工人数和生产面积,也简化了生产管理,在一次装夹中同时加工数个表面易于保证这些表面间的相互位置精度。使用设备少,大量生产可采用高效率的专用机床,以提高生产率。但采用复杂的专用设备和工艺装备,使成本增高,调整维修费事,生产准备工作 量大。 一般情况下,单件小批生产中,为简化生产管理,多将工序适当集中。但由于不采用专用设备,工序集中程序受到限制。结构简单的专用机床和工夹具组织流水线生产。 加工工序完成以后,将工件清洗干净。清洗是在 80 90 c 的含 打及 硝酸钠溶液中进行的。清洗后用压缩空气吹干净。保证零件内部杂质、铁屑、毛刺、砂粒等的残留量不大于 序的集中与分散 制订工艺路线时,应考虑工序的数目,采用工序集中或 工序分散是其两个不同的原则。所谓工序集中,就是以较少的工序完成零件的加工,反之为工序分散。 工序集中的特点 工序数目少,工件装夹次数少,缩短了工艺路线,相应减少了操作工人数和生产面积,也简化了生产管理,在一次装夹中同时加工数个表面易于保证这些表面间的相互位置精度。使用设备少,大量生产可采用高效率的专用机床,以提高生产率。但采用复杂的专用设备和工艺装备,使成本增高,调整维修费事,生产准备工作量大。 工序分散 的特点 工序内容简单,有利选择最合理的切削用量。便于采用通用设备,简单的机床工艺装备。生产准备工作量少,产品更换容易。对工人的技术水平要求不高。但需要设备和工人数量多,生产面积大,工艺路线长,生产管理复杂。 购买后包含有 纸和论文 ,咨询 工序集中与工序分散各有特点,必须根据生产类型。加工要求和工厂的具体情况进行综合分析决定采用那一种原则。 一般情况下,单件小批生产中,为简化生产管理,多将工序适当集中。但由于不采用专用设备,工序集中程序受到限制。结构简单的专用机床和工夹具组织流水线生产。 由于近代计算机控制机床及加工中心的出现,使得工序集 中的优点更为突出,即使在单件小批生产中仍可将工序集中而不致花费过多的生产准备工作量,从而可取的良好的经济效果。 工阶段的划分 零件的加工质量要求较高时,常把整个加工过程划分为几个阶段: 粗加工阶段 粗加工的目的是切去绝大部分多雨的金属,为以后的精加工创造较好的条件,并为半精加工,精加工提供定位基准,粗加工时能及早发现毛坯的缺陷,予以报废或修补,以免浪费工时。 粗加工可采用功率大,刚性好,精度低的机床,选用大的切前用量,以提高生产率、粗加工时,切削力大,切削热量多 ,所需夹紧力大,使得工件产生的内应力和变形大,所以加工精度低,粗糙度值大。一般粗加工的公差等级为 糙度为 100 m。 半精加工阶段 半精加工阶段是完成一些次要面的加工并为主要表面的精加工做好准备,保证合适的加工余量。半精加工的公差等级为 面粗糙度为 精加工阶段 精加工阶段切除剩余的少量加工余量 ,主要目的是保证零件的形状位置几精度 ,尺寸精度及表面粗糙度 ,使各主要表面达到图 纸要求 可防止或减少工件精加工表面损伤。 精加工应采用高精度的机床小的切前用量,工序变形小,有利于提高加工精度精加工的加工精度一般为 面粗糙度为 m。 此外,加工阶段划分后,还便于合理的安排热处理工序。由于热处理性质的不同,有的需安排于粗加工之前,有的需插入粗精加工之间。 购买后包含有 纸和论文 ,咨询 但须指出加工阶段的划分并不是绝对的。在实际生活中,对于刚性好,精度要求不高或批量小的工件,以及运输装夹费事的重型零件往往不严格划分阶段,在满足加工质量要求的前提下,通常只分为 粗、精加工两个阶段,甚至不把粗精加工分开。必须明确划分阶段是指整个加工过程而言的,不能以某一表面的加工或某一工序的性质区分。例如工序的定位精基准面,在粗加工阶段就要加工的很准确,而在精加工阶段可以安排钻小空之类的粗加工。 工工艺路线方案的比较 在保证零件尺寸公差、形位公差及表面粗糙度等技术条件下,成批量生产可以考虑采用专用机床,以便提高生产率。但同时考虑到经济效果,降低生产成本,拟订 三 个加工工艺路线方案。 方案一: 0 铸造 铸造 0 时效 时效处理 0 铣 铣底部端面 40 铣 铣燕尾面 和空刀槽 50 铣 铣空刀面 60 钻孔 钻、扩、铰 2270 车 车 40 孔及端面倒角 80 终检 终检 90 入库 清洗入库 方案二: 0 铸造 铸造 0 时效 时效处理 0 铣 铣底部端面 40 铣 铣燕尾面和空刀槽 50 铣 铣空刀面 60 钻孔 钻、扩、铰 2270 车 车 40 孔及端面倒角 80 终检 终检 购买后包含有 纸和论文 ,咨询 90 入库 清洗入库 加工工艺路线方案的论证: 从前两步工序可以看出: 方案 把粗、精加工都安排在一个工序中, 以便装夹、安装工件 。 再看后面的镗孔、铣孔工序, 方案 把粗、精加工分在两个不同的工序中,而 方案 都在一个工序中,这样不但有利于工件的安装,且在设计专用夹具时也可以减少工件的安装次数。 方案 2中其工序较为集中,如粗、精加工都安排在一个工序中,以便装夹、安装工件。 由以上分析:方案 1为合理、经济的加工工艺路线方案。具体的工艺过程如下表: 方案一: 0 铸造 铸造 0 时效 时效处理 0 铣 铣底部端面 40 铣 铣燕尾面和空刀槽 50 铣 铣空刀面 60 钻孔 钻、扩、铰 2270 车 车 40 孔及端面倒角 80 终检 终检 90 入库 清洗入库 件的偏差,加工余量,工序尺寸及毛坯尺寸的确定 零件 的锻造采用的是 造 制造,其材料是 生产类型为中批量生产,采用 铸造 毛坯。 坯的结构工艺要求 零件 为锻造件,对毛坯的结构工艺性有一定要求: 由于 铸造 件尺寸精度较高和表面粗糙度值低,因此零件上只有与其它机件配合的表面才需要进行机械加工,其表面均应设计为非加工表面。 为了使金属容易充满模 膛和减少工序, 铸造 件外形应力求简单、平直的对称,尽量避免 铸造 件截面间差别过大,或具有薄壁、高筋、高台等结构。 购买后包含有 纸和论文 ,咨询 铸造 件的结构中应避免深孔或多孔结构。 铸造 件的整体结构应力求简单。 工艺基准以设计基准相一致。 便于装夹、加工和检查。 结构要素统一,尽量使用普通设备和标准刀具进行加工。 在确定毛坯时,要考虑经济性。虽然毛坯的形状尺寸与零件接近,可 以减少加工余量,提高材料的利用率,降低加工成本,但这样可能导致毛坯制造困难,需要采用昂贵的毛坯制造设备,增加毛坯的制造成本。因此,毛坯的种类形状及尺寸的确定一定要考虑零件成本的问题但要保证零件的使用性能。在毛坯的种类 形状及尺寸确定后,必要时可据此绘出毛坯图。 件 的偏差计算 零件 底平面和 底部 平面的偏差及加工余量计算 底平面加工余量的计算。根据工序要求,其加工分粗、精铣加工。各工步余量如下: 粗铣:由参考文献 4表 11 19。其余量值规定为 2取 3 3可知其粗铣时精度等级为 铣平面时厚度偏差取 精铣:由参考文献 3表 59,其余量值规定为 大小孔的偏差及加工余量计算 参照参考文献 3表 3 2, 3 25,13和参考文献 18表 1 8,可以查得: 孔 40镗孔的精度等级: 13,表面粗糙度 a ,尺寸偏差是 精镗孔的精度等级: 8,表面粗糙度 ,尺寸偏差是 根据工序要求,小头孔加工分为钻、扩、铰三个工序,而大头孔加工分为粗镗、精镗二个工序完成,各工序余量如下: 钻孔 12照参考文献 3表 47,表 48。确定工序尺寸及加工余量为: 加工该孔的工艺是:钻 扩 铰 确定切削用量及工时定额 1 铣上端面 ( 1) 选择切削深度:参考 中 107 页可知切削深度 买后包含有 纸和论文 ,咨询 0 ( 2) 选择进给量:参考 中 108 表 3择每齿进给量 3) 选择切削速度:查 中 113 页表 3取 v=s ( 4) 确定刀具参数:根据 中 270 页表 5择 D=100数 Z=12 ( 5)确定机床主轴转速: 按机床选取 际切削速度 : s/4.3 w ( 6)计算切削工时 由 文献 10中 2表 7得 2. 精铣 上端面 (1) 选择切削深度:参考 文献 10表 知切削深度 2) 选择进给量:参考 文献 10表 取每齿进给量 3) 选择切削速度: 参考 文献 10 表 取 v=s (4) 确定刀具参数: 参考 文献 10 选择刀具 D=100数 Z=12,d=32,B=50 (5) 确定机床主轴转速: 按机床选取: 5r/际切削速度: ( 6)计算切削工时 查 文献 10表 2 铣燕尾面和空刀槽 工件材料: 件 m in/ D fM in/ sm in/F M 纸和论文 ,咨询 1 加工要求: D 面表面粗糙度 尾面 A、 B 及空刀面 F 的 表面粗糙度 床: 具:端铣刀(高速钢) D=100Z=12, d=32B=50 立式铣刀: D=60Z=18 锯片铣刀: D=160Z=50, d=32B=50 3. 粗铣空刀面 ( 1) 选择切削深度 : 参考 文献 10表 知 2) 选择进给量: 参考 文献 10表 择每齿进给量 3) 选择切削速度: 参考 文献 10 表 取 v=s ( 4) 确定机床主轴转速: 按机床选取 际切削速度: (5)计算切削工时: 查 文献 10表 4. 精铣空刀面 ( 1) 选择切削深度: 参考 文献 10表 知 2) 选择进给量: 参考 文献 10表 择每齿进给量 3) 选择切削速度: 参考 文献 10 表 取 v=s ( 4) 确定机床主轴转速: 按机床选取 5r/际切削速度 r / m in/ ss/601000 4.3 w in/ 00 0014.3 w 纸和论文 ,咨询 2 m in/ 0 01 0 0 0s D 5)计算切削工时 查 文献 10表 m 5. 粗铣燕尾面 (1) 选取切削深度: 参考 文献 10表 知 切削深度 2) 选择进给量: 参考 文献 10表 择每齿进给量 3) 选择切削速度: 参考 文献 10 表 取 v=s (4) 确定刀具参数: 参考 文献 10 表 式角铣刀, D=60, Z=18 (5) 确定机床主轴转速: m in/ 按机床选取 5r/际切削速度 (6)计算切削工时 查 文献 10表 6. 精铣燕尾面 (1) 选择切削深度: 参考 文献 10表 知 切削深度 2) 选择进给量: 参考 文献 10表 择每齿进给量 3) 选择切 削速度: 参考 文献 10 表 取 v=s (4) 确定刀具参数: 参考 文献 10 表 式角铣刀 D=60,Z=18 (5) 确定机床主轴转速 : 按机床选取实际转速 18r/际切削速度 (6) 计算切削工时 查 文献 10表 s/ f M 0 0 1 1 860601 0 0 0 w f M 纸和论文 ,咨询 3 7. 粗铣退刀槽 ( 1) 确定切削深度: 参考 文献 10表 知 切削深度 2) 选择进给量: 参考 文献 10表 择每齿进给量 3) 选择切削速度: 参考 文献 10 表 取 v=s ( 4 ) 确定刀 具 参数: 参考 文献 10 表 择 锯片铣刀 D=160,B=4,d=30,Z=50 ( 5) 确定机床主轴转速 : 按机床选取 0r/际切削速度 : 计算切削工时 : 查 文献 10表 8. 精 铣 退刀槽 (1) 选择切削深度:参 考 文献 10表 知 切削深度 2) 选择进给量:参考 文献 10表 择每齿进 给量 3) 选择切削速度: 文献 10 表 取 v=s (4) 确定 刀具参数 文献 10 表 择锯片铣刀 D=160,B=4,d=30,Z=50 (5) 确定机床主轴转速 按机床选取 30r/际切削速度 s/ ( 6) 计算切削工时 查 文献 10表 m in/ D vn ss/ 0030160601 0 00w f M in/ 001 0 00 D vn sm f M z 纸和论文 ,咨询 4 钻、扩、铰 22工序 80:钻孔。 机床:立式钻床 具:根据参照参考 文献 3表 9 选高速钢锥柄麻花钻头。 进给量 f :根据参考文献 3表 38,取 。 切削速度 V :参照参考文献 3表 41,取 V m s 。 机床主轴转速 n : 1 0 0 0 1 0 0 0 0 . 4 8 6 0 5 3 9 . 5 3 / m i 1 4 1 7 , 按照参考文献 3
温馨提示:
1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
2: 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
3.本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
提示  人人文库网所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
关于本文
本文标题:开合螺母上加工孔的车床夹具-常州机电开合螺母加工工艺及夹具设计【车夹具全套设计及CAD图纸通过答辩】
链接地址:https://www.renrendoc.com/p-1049668.html

官方联系方式

2:不支持迅雷下载,请使用浏览器下载   
3:不支持QQ浏览器下载,请用其他浏览器   
4:下载后的文档和图纸-无水印   
5:文档经过压缩,下载后原文更清晰   
关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

网站客服QQ:2881952447     

copyright@ 2020-2024  renrendoc.com 人人文库版权所有   联系电话:400-852-1180

备案号:蜀ICP备2022000484号-2       经营许可证: 川B2-20220663       公网安备川公网安备: 51019002004831号

本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知人人文库网,我们立即给予删除!