故障的分析、尺寸的决定以及凸轮的分析和应用英文翻译.doc

CA6140型车床进给箱设计【全套CAD图纸和毕业答辩论文】

收藏

压缩包内文档预览:
预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图
编号:10600729    类型:共享资源    大小:1.58MB    格式:RAR    上传时间:2018-09-01 上传人:好资料QQ****51605 IP属地:江苏
50
积分
关 键 词:
ca6140 车床 进给 设计 全套 cad 图纸 以及 毕业 答辩 论文
资源描述:

【温馨提示】 购买原稿文件请充值后自助下载。

以下预览截图到的都有源文件,图纸是CAD,文档是WORD,下载后即可获得。


预览截图请勿抄袭,原稿文件完整清晰,无水印,可编辑。

有疑问可以咨询QQ:414951605或1304139763

摘要



CA6140型卧式车床是普通精度级的万能机床,它的特有功能是车削一定范围内的各种螺纹,包括切削公制螺纹、英制螺纹、模数螺纹和径节螺纹的功能,要求进给传动链的变速机构能严格准确地按照标准螺距数列来变化。CA6140型卧式车床进给箱固定在床身左前面,内有进给运动的变换装置及操纵机构,其功能是改变被加工螺纹的螺距或机动进给的进给量。变换装置包括移换机构,用来实现倒数关系及特殊因子;基本螺距机构,用来实现车削出导程值按等差数列排列的螺纹;倍增机构,用来实现车削螺纹的导程值成倍数关系变化的螺纹。

当U倍 =1时发现一条新的传动链,可以提高部分公制及模数螺纹的切削精度,并使传动路线大大缩短。


关键词:进给箱;变换装置;移换机构;基本螺距机构;倍增机构



                    目录

第一章 绪论-----------------------------------------------------------------1

第二章 CA6140进给箱传动方案设计----------------------------------4

2.1  CA6140普通车床简介-------------------------------------------------------------------------4

2.2  进给箱的传动机构-----------------------------------------------------------------------------5

2.3  进给箱切螺纹机构设计----------------------------------------------------------------------8

2.4  切螺纹系统及齿数比的确定---------------------------------------------------------------9

2.5  增倍机构设计以及移换机构设计--------------------------------------------------------10

2.6  车制螺纹的工作过程-------------------------------------------------------------------------12

第三章 主要零件设计-----------------------------------------------------21

 3.1  齿式离合器的设计-----------------------------------------------------------------------------21

3.2  各轴及轴上组件的设计验算---------------------------------------------------------------21

3.2.1  中心距a的确定----------------------------------------------------------------------------22

3.2.2  XII轴上齿轮的设计验算-----------------------------------------------------------------22

3.2.3  XIV轴上齿轮的验算----------------------------------------------------------------------25

3.2.4  XIV轴的设计验算-------------------------------------------------------------------------30

3.2.5  XV轴上齿轮的设计验算-----------------------------------------------------------------35

3.2.6  XV轴的设计验算--------------------------------------------------------------------------38

3.2.7  XVI轴齿轮的设计验算-------------------------------------------------------------------40

第四章 双联滑移齿轮进给箱传动系统的研究-----------------------44

4.1  新传动链车公制螺纹-------------------------------------------------------------------------44

4.2  新传动链车模数螺纹-------------------------------------------------------------------------45

4.3  新传动链的特点及适用范围---------------------------------------------------------------46

结论---------------------------------------------------------------------------48

致谢---------------------------------------------------------------------------49

参考文献---------------------------------------------------------------------50


第一章   绪  论

一、毕业设计的目的及意义

    毕业设计是本科生教学活动中最后的一个重要环节。通过这个教学环节要求达到下列几个目的:

   1、通过毕业设计,把在本科阶段中所获得的知识在实际的设计工作中综合地加以运用。使这些知识得到巩固,加强和发展,并使理论知识和生产实践密切地结合起来。因此,毕业设计是大学学习阶段的总结性作业。

   2、毕业设计是高等学校学生第一次进行的比较完整的设计过程。通过毕业设计,培养学生独立工作、发现问题和解决问题的能力;能根据设计课题查找有关的资料,了解本课题的前沿和发展方向;树立正确的设计思想,掌握设计的基本方法和步骤,为以后从事设计工作打下良好的基础。

   3、使学生能够熟练地应用有关参考资料,计算图表、手册,图集,规范,并熟悉有关国家标准和部颁标准(如GB,JB等),以完成一个工程技术人员在机械工程设计方面所必须具备的基本训练。

二、毕业设计的内容

⑴ 方案论证;

⑵ 总体分析、设计、计算; 

⑶ 传动设计;

⑷ 进给箱及部分组件、零件设计

⑸ 相关资料检索、翻译。

三、完成后应交的作业(包括各种说明书、图纸等)

1.毕业设计全部资料光盘。

2.毕业设计说明书。(正文不少于1.5万字)

3.总体装配图、进给箱装配图及部分组件、零件图。(合计不少于3张A0图量)

4.相关内容检索资料与翻译(原文不少于15000字符)


内容简介:
译 文学 院: 机械工程学院 专 业: 机械设计制造及其自动化学 号: 0545501141姓 名: 周 炜 指导教师: 李钦奉 教授Failure Analysis,Dimensional Determination And Analysis,Applications Of CamsJack BaubleAbstract:It is absolutely essential that a design engineer know how and why parts fail so that reliable machines that require minimum maintenance can be designed;Cams are among the most versatile mechanisms availableA cam is a simple two-member deviceThe input member is the cam itself,while the output member is called the followerThrough the use of cams,a simple input motion can be modified into almost any conceivable output motion that is desiredKey words: failure high-speed cams design propertiesINTRODUCTIONIt is absolutely essential that a design engineer know how and why parts fail so that reliable machines that require minimum maintenance can be designedSometimes a failure can be serious,such as when a tire blows out on an automobile traveling at high speedOn the other hand,a failure may be no more than a nuisanceAn example is the loosening of the radiator hose in an automobile cooling systemThe consequence of this latter failure is usually the loss of some radiator coolant,a condition that is readily detected and correctedThe type of load a part absorbs is just as significant as the magnitudeGenerally speaking,dynamic loads with direction reversals cause greater difficulty than static loads,and therefore,fatigue strength must be consideredAnother concern is whether the material is ductile or brittleFor example,brittle materials are considered to be unacceptable where fatigue is involvedMany people mistakingly interpret the word failure to mean the actual breakage of a partHowever,a design engineer must consider a broader understanding of what appreciable deformation occursA ductile material,however will deform a large amount prior to ruptureExcessive deformation,without fracture,may cause a machine to fail because the deformed part interferes with a moving second partTherefore,a part fails(even if it has not physically broken)whenever it no longer fulfills its required functionSometimes failure may be due to abnormal friction or vibration between two mating partsFailure also may be due to a phenomenon called creep,which is the plastic flow of a material under load at elevated temperaturesIn addition,the actual shape of a part may be responsible for failureFor example,stress concentrations due to sudden changes in contour must be taken into accountEvaluation of stress considerations is especially important when there are dynamic loads with direction reversals and the material is not very ductileIn general,the design engineer must consider all possible modes of failure,which include the followingStressDeformationWearCorrosionVibrationEnvironmental damageLoosening of fastening devicesThe part sizes and shapes selected also must take into account many dimensional factors that produce external load effects,such as geometric discontinuities,residual stresses due to forming of desired contours,and the application of interference fit jointsCams are among the most versatile mechanisms availableA cam is a simple two-member deviceThe input member is the cam itself,while the output member is called the followerThrough the use of cams,a simple input motion can be modified into almost any conceivable output motion that is desiredSome of the common applications of cams areCamshaft and distributor shaft of automotive engine Production machine toolsAutomatic record playersPrinting machinesAutomatic washing machinesAutomatic dishwashersThe contour of high-speed cams (cam speed in excess of 1000 rpm) must be determined mathematicallyHowever,the vast majority of cams operate at low speeds(less than 500 rpm) or medium-speed cams can be determined graphically using a large-scale layoutIn general,the greater the cam speed and output load,the greater must be the precision with which the cam contour is machinedDESIGN PROPERTIES OF MATERIALSThe following design properties of materials are defined as they relate to the tensile testStatic Strength The strength of a part is the maximum stress that the part can sustain without losing its ability to perform its required functionThus the static strength may be considered to be approximately equal to the proportional limit,since no plastic deformation takes place and no damage theoretically is done to the materialStiffness Stiffness is the deformation-resisting property of a materialThe slope of the modulus line and,hence,the modulus of elasticity are measures of the stiffness of a materialResilience Resilience is the property of a material that permits it to absorb energy without permanent deformationThe amount of energy absorbed is represented by the area underneath the stress-strain diagram within the elastic regionToughness Resilience and toughness are similar propertiesHowever,toughness is the ability to absorb energy without ruptureThus toughness is represented by the total area underneath the stress-strain diagram, as depicted in Figure 28bObviously,the toughness and resilience of brittle materials are very low and are approximately equalBrittleness A brittle material is one that ruptures before any appreciable plastic deformation takes placeBrittle materials are generally considered undesirable for machine components because they are unable to yield locally at locations of high stress because of geometric stress raisers such as shoulders,holes,notches,or keywaysDuctility A ductility material exhibits a large amount of plastic deformation prior to ruptureDuctility is measured by the percent of area and percent elongation of a part loaded to ruptureA 5%elongation at rupture is considered to be the dividing line between ductile and brittle materialsMalleability Malleability is essentially a measure of the compressive ductility of a material and,as such,is an important characteristic of metals that are to be rolled into sheetsHardness The hardness of a material is its ability to resist indentation or scratchingGenerally speaking,the harder a material,the more brittle it is and,hence,the less resilientAlso,the ultimate strength of a material is roughly proportional to its hardnessMachinability Machinability is a measure of the relative ease with which a material can be machinedIn general,the harder the material,the more difficult it is to machine COMPRESSION AND SHEAR STATIC STRENGTHIn addition to the tensile tests,there are other types of static load testing that provide valuable informationCompression Testing Most ductile materials have approximately the same properties in compression as in tensionThe ultimate strength,however,can not be evaluated for compressionAs a ductile specimen flows plastically in compression,the material bulges out,but there is no physical rupture as is the case in tensionTherefore,a ductile material fails in compression as a result of deformation,not stressShear Testing Shafts,bolts,rivets,and welds are located in such a way that shear stresses are producedA plot of the tensile testThe ultimate shearing strength is defined as the stress at which failure occursThe ultimate strength in shear,however,does not equal the ultimate strength in tensionFor example,in the case of steel,the ultimate shear strength is approximately 75% of the ultimate strength in tensionThis difference must be taken into account when shear stresses are encountered in machine componentsDYNAMIC LOADSAn applied force that does not vary in any manner is called a static or steady loadIt is also common practice to consider applied forces that seldom vary to be static loadsThe force that is gradually applied during a tensile test is therefore a static loadOn the other hand,forces that vary frequently in magnitude and direction are called dynamic loadsDynamic loads can be subdivided to the following three categoriesVarying Load With varying loads,the magnitude changes,but the direction does notFor example,the load may produce high and low tensile stresses but no compressive stressesReversing Load In this case,both the magnitude and direction changeThese load reversals produce alternately varying tensile and compressive stresses that are commonly referred to as stress reversalsShock Load This type of load is due to impactOne example is an elevator dropping on a nest of springs at the bottom of a chuteThe resulting maximum spring force can be many times greater than the weight of the elevator,The same type of shock load occurs in automobile springs when a tire hits a bump or hole in the roadFATIGUE FAILURE-THE ENDURANCE LIMIT DIAGRAMThe test specimen in Figure 2.10a,after a given number of stress reversals will experience a crack at the outer surface where the stress is greatestThe initial crack starts where the stress exceeds the strength of the grain on which it actsThis is usually where there is a small surface defect,such as a material flaw or a tiny scratchAs the number of cycles increases,the initial crack begins to propagate into a continuous series of cracks all around the periphery of the shaftThe conception of the initial crack is itself a stress concentration that accelerates the crack propagation phenomenonOnce the entire periphery becomes cracked,the cracks start to move toward the center of the shaftFinally,when the remaining solid inner area becomes small enough,the stress exceeds the ultimate strength and the shaft suddenly breaksInspection of the break reveals a very interesting pattern,as shown in Figure 2.13The outer annular area is relatively smooth because mating cracked surfaces had rubbed against each otherHowever,the center portion is rough,indicating a sudden rupture similar to that experienced with the fracture of brittle materials This brings out an interesting factWhen actual machine parts fail as a result of static loads,they normally deform appreciably because of the ductility of the material.Thus many static failures can be avoided by making frequent visual observations and replacing all deformed partsHowever,fatigue failures give to warningFatigue fail mated that over 90% of broken automobile parts have failed through fatigueThe fatigue strength of a material is its ability to resist the propagation of cracks under stress reversalsEndurance limit is a parameter used to measure the fatigue strength of a materialBy definition,the endurance limit is the stress value below which an infinite number of cycles will not cause failureLet us return our attention to the fatigue testing machine in Figure 2.9The test is run as follows:A small weight is inserted and the motor is turned onAt failure of the test specimen,the counter registers the number of cycles N,and the corresponding maximum bending stress is calculated from Equation 2.5The broken specimen is then replaced by an identical one,and an additional weight is inserted to increase the loadA new value of stress is calculated,and the procedure is repeated until failure requires only one complete cycleA plot is then made of stress versus number of cycles to failureFigure 2.14a shows the plot,which is called the endurance limit or S-N curveSince it would take forever to achieve an infinite number of cycles,1 million cycles is used as a referenceHence the endurance limit can be found from Figure 2.14a by noting that it is the stress level below which the material can sustain 1 million cycles without failureThe relationship depicted in Figure 2.14 is typical for steel,because the curve becomes horizontal as N approaches a very large numberThus the endurance limit equals the stress level where the curve approaches a horizontal tangentOwing to the large number of cycles involved,N is usually plotted on a logarithmic scale,as shown in Figure 2.14bWhen this is done,the endurance limit value can be readily detected by the horizontal straight lineFor steel,the endurance limit equals approximately 50% of the ultimate strengthHowever,if the surface finish is not of polished equality,the value of the endurance limit will be lowerFor example,for steel parts with a machined surface finish of 63 microinches ,the percentage drops to about 40%For rough surfaces,the percentage may be as low as 25% The most common type of fatigue is that due to bendingThe next most frequent is torsion failure,whereas fatigue due to axial loads occurs very seldomSpring materials are usually tested by applying variable shear stresses that alternate from zero to a maximum value,simulating the actual stress patternsIn the case of some nonferrous metals,the fatigue curve does not level off as the number of cycles becomes very largeThis continuing toward zero stress means that a large number of stress reversals will cause failure regardless of how small the value of stress isSuch a material is said to have no endurance limitFor most nonferrous metals having an endurance limit,the value is about 25% of the ultimate strengthEFFECTS OF TEMPERATURE ON YIELD STRENGTH AND MODULUS OF ELASTICITYGenerally speaking,when stating that a material possesses specified values of properties such as modulus of elasticity and yield strength,it is implied that these values exist at room temperatureAt low or elevated temperatures,the properties of materials may be drastically differentFor example,many metals are more brittle at low temperaturesIn addition,the modulus of elasticity and yield strength deteriorate as the temperature increasesFigure 2.23 shows that the yield strength for mild steel is reduced by about 70% in going from room temperature to 1000oFFigure 2.24 shows the reduction in the modulus of elasticity E for mild steel as the temperature increasesAs can be seen from the graph,a 30% reduction in modulus of elasticity occurs in going from room temperature to 1000oFIn this figure,we also can see that a part loaded below the proportional limit at room temperature can be permanently deformed under the same load at elevated temperaturesCREEP: A PLASTIC PHENOMENONTemperature effects bring us to a phenomenon called creep,which is the increasing plastic deformation of a part under constant load as a function of timeCreep also occurs at room temperature,but the process is so slow that it rarely becomes significant during the expected life of the temperature is raised to 300oC or more,the increasing plastic deformation can become significant within a relatively short period of timeThe creep strength of a material is its ability to resist creep,and creep strength data can be obtained by conducting long-time creep tests simulating actual part operating conditionsDuring the test,the plastic strain is monitored for given material at specified temperaturesSince creep is a plastic deformation phenomenon,the dimensions of a part experiencing creep are permanently alteredThus,if a part operates with tight clearances,the design engineer must accurately predict the amount of creep that will occur during the life of the machineOtherwise,problems such binding or interference can occur Creep also can be a problem in the case where bolts are used to clamp tow parts together at elevated temperaturesThe bolts,under tension,will creep as a function of timeSince the deformation is plastic,loss of clamping force will result in an undesirable loosening of the bolted jointThe extent of this particular phenomenon,called relaxation,can be determined by running appropriate creep strength testsFigure 2.25 shows typical creep curves for three samples of a mild steel part under a constant tensile loadNotice that for the high-temperature case the creep tends to accelerate until the part failsThe time line in the graph (the x-axis) may represent a period of 10 years,the anticipated life of the productSUMMARYThe machine designer must understand the purpose of the static tensile strength testThis test determines a number of mechanical properties of metals that are used in design equationsSuch terms as modulus of elasticity,proportional limit,yield strength,ultimate strength,resilience,and ductility define properties that can be determined from the tensile testDynamic loads are those which vary in magnitude and direction and may require an investigation of the machine parts resistance to failureStress reversals may require that the allowable design stress be based on the endurance limit of the material rather than on the yield strength or ultimate strengthStress concentration occurs at locations where a machine part changes size,such as a hole in a flat plate or a sudden change in width of a flat plate or a groove or fillet on a circular shaftNote that for the case of a hole in a flat or bar,the value of the maximum stress becomes much larger in relation to the average stress as the size of the hole decreasesMethods of reducing the effect of stress concentration usually involve making the shape change more gradualMachine parts are designed to operate at some allowable stress below the yield strength or ultimate strengthThis approach is used to take care of such unknown factors as material property variations and residual stresses produced during manufacture and the fact that the equations used may be approximate rather that exactThe factor of safety is applied to the yield strength or the ultimate strength to determine the allowable stressTemperature can affect the mechanical properties of metalsIncreases in temperature may cause a metal to expand and creep and may reduce its yield strength and its modulus of elasticityIf most metals are not allowed to expand or contract with a change in temperature,then stresses are set up that may be added to the stresses from the loadThis phenomenon is useful in assembling parts by means of interference fitsA hub or ring has an inside diameter slightly smaller than the mating shaft or postThe hub is then heated so that it expands enough to slip over the shaf
温馨提示:
1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
2: 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
3.本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
提示  人人文库网所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
关于本文
本文标题:CA6140型车床进给箱设计【全套CAD图纸和毕业答辩论文】
链接地址:https://www.renrendoc.com/p-10600729.html

官方联系方式

2:不支持迅雷下载,请使用浏览器下载   
3:不支持QQ浏览器下载,请用其他浏览器   
4:下载后的文档和图纸-无水印   
5:文档经过压缩,下载后原文更清晰   
关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

网站客服QQ:2881952447     

copyright@ 2020-2025  renrendoc.com 人人文库版权所有   联系电话:400-852-1180

备案号:蜀ICP备2022000484号-2       经营许可证: 川B2-20220663       公网安备川公网安备: 51019002004831号

本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知人人文库网,我们立即给予删除!