第一章建设项目经济评价基本知识_第1页
第一章建设项目经济评价基本知识_第2页
第一章建设项目经济评价基本知识_第3页
第一章建设项目经济评价基本知识_第4页
第一章建设项目经济评价基本知识_第5页
已阅读5页,还剩51页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第一章 建设项目经济评价基本知识教学目的:掌握建设项目的基本概念,掌握资金的 时间价值的基本公式和资金等值的计算。 教学难点:现金流量的构成和现金流量图的绘制; 名义利率和实际利率的区别及计算。教学重点:了解资金时间价值的概念及其影响因 素,并掌握一次支付型和多次支付型资 金等值的计算。第一章 建设项目经济评价基本知识l 1.1建设项目基本概念l 1.2现金流量与现金流量图l 1.3资金的时间价值l 1.4名义利率与实际利率l 1.5资金时间价值公式的应用1.1建设项目基本概念l 一、项目的概念1.项目 一次性 、目标 明确性 、管理对象 整体性 的任务2.工程项目 建设项目 固定资产投资项目施工项目 建筑施工企业的生产对象。(建设项目、单项工程或单位工程的施工,以工程合同来界定)l 二、建设项目的经济评价财务评价 考察项目在财务上的可行性国民经济评价 分析计算项目对国民经济的贡献,考察项目的经济合理性。注意: 财务评价和国民经济评价都可行的项目可以通过,反之否定。国民经济评价不可行的,一般予以否定;影响国计民生的项目,国民经济评价好,财务不可行的,应重新考虑方案,使项目具有财务生存能力。1.2 现金流量与现金流量图现金流量与现金流量图l 一、现金流量 (Cash Flow)的概念项目的寿命周期 把投资项目看作是一个系统,这个系统有一个寿命周期,即从项目发生第一笔资金开始一直到项目终结报废为止的整个时间称为项目的寿命周期。l 在不同的项目之间进行比较时,不一定都用项目的寿命周期进行比较,而是选用一个计算期来比较。l 项目寿命期 : 决策 -实施 -使用l 现金流量 每个项目在其计算期中,各个时刻点都会有现金交易活动,或者是流入、或者是流出,这个现金流入、流出就称为现金流量。1.2 现金流量与现金流量图现金流量与现金流量图现金流入 整个计算期内流入项目系统的资金,如销售 收入、捐赠收入、补贴收入、期末固定资产回收收入和回收的流动资金等。l 现金流量 现金流出 指在项目的整个计算期内流出项目系统的资金,如企业投入的自有资金、上缴的销售税金 及附加、借款本金和利息的偿还、上缴的罚款、购买原材料设备等的支出、支付工人的工资等。净现金流量 =现金流入 -现金流出在技术经济分析中,把各个时间点上实际发生的资金流出或资金流入称为现金流量。其中流入系统的称现金流入,流出系统的称为现金流出,同一时间点上其差额称净现金流量。 l 现金流量的计算不仅有本身的计量单位,还有一个时间单位。一般情况下,现金流量本身的计量单位为 “元 ”、 “万元 ”、 “美元 ”等。但时间单位是多少呢?这就需要根据利息的计算时间单位来确定了。如果利息的计算时间单位为一年,那么现金流量计算的时间单位也为一年;如果利息的计算时间单位为一月,那么现金流量计算的时间单位也为一月。l 二、现金流量图l 现金流量图 (Cash Flow Diagram) 如图所示,它是用坐标轴、箭头、时刻点及数字等来表示的图。具体地讲,现金流量图是描述工程项目整个计算期内各时间点上的现金流入和现金流出的序列图。l 现金流量图中的横轴是时间轴,一般是向右的箭头轴。时间轴上刻有时刻点,并标注有时刻数字。每相邻两个时刻点间隔的长度相等。时间轴箭头末端还应标注时间单位。纵轴是现金流量轴,表示现金流入或流出。箭头的长短表示现金流量的大小,箭头越长,现金流入或流出量越大;反之,越小。例:某人四年前存入 1000元钱,前 3年年末取出当年利息,最后一年利息本金一起取出。年利率 10。对个人:对银行:0 1 2 3 41000(年)10001000 1 2 3 41000(年)1000100例:某项目第一、第二、第三年分别投资 100万、 70万、 50万,以后各年均收益 90万,经营费用均为 20万,寿命期 10年,期末残值 40万。试画出现金流量图。(年) 0 1 2 3 4 5 6 7 8 9 109010070504020几点说明: 每一笔现金流入和现金流出都必须有相应的发生时点(投资发生在年初,收益发生在年末) 只有当一个经济系统收入或支出的现金所有权发生真实变化时,这部分现金才能成为现金流量; 对一项经济活动的现金流量的考虑与分析,因考察角度和所研究系统的范围不同会有不同结果。1.3资金的时间价值l主要内容 l 资金时间价值计算 l 名义利率和有效利率转化 l 等值计算一、资金的时间价值 指初始货币在生产与流通中 与劳动相结合 ,即作为 资本 或 资金 参与 再生产 和 流通 ,随着 时间 的推移会得到 货币增值 ,用于投资就会带来利润;用于储蓄会得到利息。 l 影响资金时间价值的主要因素l 资金的使用时间 资金增值率一定,时间越长,时间价值越大 l 资金数量的大小 其他条件不变,资金数量越大,时间价值越大 l 资金投入和回收的特点 总投资一定,前期投入越多,资金负效益越大; 资金回收额一定,较早回收越多,时间价值越大 l 资金的周转速度 越快,一定时间内等量资金的时间价值越大资金时间价值原理应用的 基本原则:资金的 时间价值通货膨胀导致货币贬值性质不同通货膨胀:货币发行量超过商品流通实际需要量引起货币贬值和物价上涨现象资金与劳动相结合的产物 注意 最大限度的获得资金的时间价值 二、 利息和利率l 资金时间价值的计算方法与复利方式计息的方法完全相同,因为利息就是时间价值的一种重要的表现形式。l 利息 是指放弃资金的使用权应该得到的回报 (如存款利息 )或者指占有资金的使用权应该付出的代价 (如贷款利息 )。利息是根据利率来计算的。 I=F一 Pl 利率 是一个计息周期内所得到的利息额与借贷资金额 (即本金 )之比,一般用百分比来表示。l i=I/P*100%l P 本金 n 计息周期数 l F 本利和 i 利率l 利率越大,表明资金增值越快。l 例题 :某公司借本金 1000万 ,一年后付息 80万,则年利率为 ?l 利率高低决定因素 :l 1.社会平均利润率l 2.借贷资本供求l 3.风险大小l 4.通货膨胀l 5.借出资本期限长短。三、计息方法l 利息分单利和复利两种。l 单利 单利就是每期均按原始本金计算利息,利息不再计算利息。设 P(Present 的第一个字母 )代表原始本金, F(Future 的第一个字母 )代表未来值, n 代表计息期数 (如年数、月数 ), i 代表计息周期内的利率, I 代表总的利息。则按照单利计算, n期内的总利息为:n 期后的本利和应为:三、计息方法l 【 例 】 某人存入银行 2000 元,年存款利率为 2.8%,存 3 年,试按单利计算 3 年后此人能从银行取出多少钱? (不考虑利息税 )解 : 3 年后的本利和 F = P(1 + ni) = 2000(1 + 32.8%)= 2168(元 ),即 3 年后此人能从银行取出 2168 元钱。注意 :单利计算法没有考虑利息进入再生产过程从而实现增值的可能性,新生利息不加入本,即利不生利,不符合资金运动的实际情况,通常仅适用于 短期投资及期限不超过一年的项目。l 复利 每期均按原始本金和上期的利息和来计算利息。也就是说,每期不仅要对本金计算利息,还要对利息计算利息,即所谓的“ 利滚利 ” 。l 复利计算公式为:按照复利计算, n 期末的利息为:l 仍以上面单利的例子为例。即本金为 2000 元,年存款利率为 2.8 %,存 3 年,按复利计算 3 年后能从银行取出多少钱? (不考虑利息税 )l 解: 3 年后复利的本利和:l 即 3 年后此人能从银行取出 2172.75 元钱。l 从以上的计算可见,在所有条件相同的情况下,一般按复利计算的利息大于按单利计算的利息。而且,本金越大,利率越高,计息周期越长,复利利息与单利利息的差别越大。由此可见,复利更符合资金在社会再生产过程中的运动规律。 正是复利计息反映了资金在社会再生产过程中的真实运动情况,所以在工程项目经济评价中,都采用复利计息法。单利仅考虑了本金产生的时间价值,未考虑前期利息产生的时间价值 复利完全考虑了资金的时间价值 债权人 按复利计算资金时间价值有利 债务人 按单利计算资金时间价值有利 按单利还是按复利计算,取决于债权人与债务人的地位 同一笔资金,当 i、 n相同,复利计算的利息比单利计算的利息大,本金越大、利率越高、计息期数越多,两者差距越大l 利息和利率的作用 :l 1.以信用方式动员和筹措资金的动力l 2.促进投资者加强经济核算,节约使用资金l 3.宏观经济调控的杠杆l 4.金融业发展的重要条件四、资金的等值计算年利率 计息周期为一年的利率。等值 不同时间点上数目不等的资金具有相等的价值。资金的等值可能出现两种情况: 同一数量的资金,在不同时间内,将具有不同等的价值; 不同等的两笔资金,在不同时间内,将有可能具有相等的价值。影响资金等值的因素: 1.金额 2.计息周期 3.利率利用等值的概念,可以把在一个时点发生的资金金额换算成另一时点的等值金额,这一过程叫资金等值计算。目的:不同时点的资金就可以进行等值运算,解决工程项目经济分 析中经济效果比较的问题。 有关资金等值计算中的几个基本概念:l (1) 现值 用 P (Present Value)表示。它表示资金发生在(或折算为)某个特定的时间序列的起始时刻的现金流量。将一个时点上的资金 “ 从后往前 ” 折算到某个时刻点上就是求现值。求现值的过程也叫做折现 (或贴现 )。l (2) 终值 用 F(Future Value)表示。它表示资金发生在某个特定的时间序列的终点时刻的现金流量。将一个序列时间点上的资金 “ 从前往后 ” 折算到某个时刻点上的过程就叫求终值。求资金的终值也就是求资金的 本利和 。l (3) 年值 用 A(Annuity)表示。它表示发生在每年的等额现金流量,即在某个特定时间序列内,每隔相同时间收入或支出的等额资金。在工程经济分析计算中,如无特别说明,我们一般约定 A 发生在期末,如第 1 年末、第 2 年末等。l (4) 等值 (Equivalence) 没有特定的符号表示,因为等值相对于现值、终值和年值来说是一个抽象的概念,它只是资金的一种转换计算过程。等值既可以是现值、终值,也可以是年值。因为实际上,现值和终值也是一个相对概念。如某项目第 5 年的值相对于前 14年的值来说,它是终值,而相对于 5 年以后的值来说,它又是现值。 等值是指在考虑资金的时间价值的情况下,不同时刻点上发生的绝对值不等的资金具有相同的价值。资金的等值计算非常重要, 资金的时间价值计算核心就是进行资金的等值计算 。 资金等值计算的基本公式资金等值计算的基本类型 一次支付系列l 一次支付 终值公式 (复利率 i)F = P (1+i) n=P(F/P,i,n) (1+i)n 称为一次支付终值系数,用 (F/P, i, n)表示。0 1 2 3F =?P n()例:一位父亲现在把 10000元投资于年利率为 10的基金,并计划在 10年后一次性全部取出,用于女儿的大学教育。那么,在第 10年末,帐户里将有多少钱?解法一 : 直接用公式计算P=10000, i=10%, n=10年F = P(1+i)n= 10000(1+0.10)10= 25937( 元 )解法二 : 利用附录的复利表(课本)计算P=10000, i=10%, n=10年F = P(F/P, i, n)= 10000(F/P, 0.10, 10)= 10000(2.594)= 25940 ( 元 )0 1 2 F =?P=10000 10(年)l 一次支付现值公式P称为折现值或贴现值; i 称为折现率或贴现率; (1+i) n 称为一次支付现值系数,用 (P/F, i, n)表示。例:某人打算在 5年后买 100000元的车,已知年利率为 10,那么他现在需在银行存多少钱?解: F =100000, i =10%, n =5年P = F(1+i)-n= F(P/F, i, n)= 100000(1+0.10)-5= 62092 ( 元 )F0 1 2 3P=? n()0 1 2 3 4 5P=?(年)F=100000P = F(1+i )-n = F(P/F, i, n)l 若年利率为 10%,如要在第 4年年末得到的本利和为 1464.1元,则第一年年初的投资为多少?l 某单位计划 5年后进行厂房维修,需资金 40万元,银行年利率按 9%计算,问现在应一次性存入银行多少万元才能使这一计划得以实现? 例:某项目的资金 (万 元 ) 流动情况如下图所示,求第三期期末的等值资金。已知 i =10。解: X = -100(F/P, 0.10, 3)-70(F/P, 0.10, 2)+90(P/F, 0.10, 1)+150(P/F, 0.10, 4)= -100(1.331)-70(1.21)+90(0.9091)+150(0.6830)= -133.1-84.7+81.819+102.45= -33.531 (万 元 )(年) 0 1 2 3 4 5 6 790100 70150x=?l3.等额分付终值公式

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论