基于单片机的恒压供水系统设计方案_第1页
基于单片机的恒压供水系统设计方案_第2页
基于单片机的恒压供水系统设计方案_第3页
基于单片机的恒压供水系统设计方案_第4页
基于单片机的恒压供水系统设计方案_第5页
已阅读5页,还剩53页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1 基于单片机的恒压供水系统设计方案 设计背景 随着居民区的不断扩建与改造,楼房层数的不断加高,我国居民用水难问题越来越突出,特别是高层建筑居民,原有的自来水管网的压力出现不足,大部分地区普遍存在着用水高峰期高层供不上水,高层居民经常出现用水难问题,给生活带来极大不便。这种用水难问题在大城市表现尤为突出。 由于能源的问题不得不改变以往的供水方案,来改变在供水中的能源浪费问题,在国内外已有很多关于很压供水的研究,其中主要由两种,一是基于单片机加通用变频器的恒压供水,一是基于 专用变频器的恒压供水,两种各有自己 的特点,第一种价格便宜,通用性强,易于操作,不需专业人员就能操作,而后者价格高,对专业知识要求高,非专业人员不易操作,但是其抗干扰能力强,在市场上也有很大的应用,但是大多数人需要一个即便宜又容易操作的恒压供水系统,本设计就利用单片机和通用变频器来设计此恒压供水系统,并通过对系统的优化来消除此系统的缺点,也就是来提高单片机系统的抗干扰能力,来体现其通用性强,易于操作的优点。 设计目标 该系统主要以单片机为主控模块,通过控制变频器的输出频率从而自动调节水泵电机的转速,实现管网水压的闭环调节,使供水系统自动恒稳 于设定的压力值,实现恒压供水。即用水量增加时,频率升高,水泵转速加快,供水量相应增大;用水量减少时,频率降低,水泵转速减慢,供水量相应减小。采用该供水系统不需建造高位水箱或水塔,水质无二次污染,是一种理想的现代化建筑供水方案。本次设计的预期目标是:完成系统硬件电路的设计,并绘制出相应的原理电路图;完成所需控制软件的流程设计和编程任务。 实施计划 3月下旬至 4月初,查阅和收集文献资料; 4月初至 4月中旬,提出设计方案,并对方案进行比较和论证,选出最佳方案; 4月中旬至 5月初,完成硬件电路设计; 5月初月至五月中旬 完成相关软件编程; 5月中旬至 5月底进行系统的模拟测试; 6月上旬撰写设计报告,并准备毕业设计答辩。 2 3 2 总体方案设计 通过查阅大量相关技术资料,并结合自己的实际知识,我主要提出了三种技术方案来实现系统功能。下面我将首先对这三种方案的组成框图和实现原理分别进行说明,并分析比较它们的特点,然后阐述我最终选择方案的原因。 方案比较 方案一 图 2方案一的原理框图 方案一系统由泵机和可变频网络组成。如图 2示,以 80核心构成控制器,将设定值 与压力反馈值进行 统通过压力传感器将电器部分与泵组联系起来,构成闭环系统。 方案二 方案二系统由变频器、控制器、传感器、主副两个水泵电机及相关电气控制设备集成而成,是一种具有变频调速和全自动闭环控制功能的机电一体化智能设备。它可同时对二台三相 380/50步电动机行变频调速和闭环控制,其系统组成示意图如图 2下图中我们可以看到,自动恒压供水控制系统的基本控制策略是:采用电动机调速装置与供水控制器构成控制系统,进行优化控制泵组的调速运行,并自动调整泵组的运行台数,完成供水压力的闭 环控制,在管网流量变化时达到稳定供水压力和节约电能的目的。 单 片 机 开关 A/D 转换 恒速泵压机 变频泵压机 D/A 转换 压力传感器 管网水压 4 图 2方案二的原理框图 方案三 图 2方案三的原理框图 系统由专用变频器、压力传感器、水泵等组成。如图 2用变频器就是指有内置 着电力电子技术的飞速发展变频器的功能也越来越强。充分利用变频器内置的各种功能,对变频调速恒压供水设备进行合理的设计。国外不少生产厂家近年来纷纷推出了一系列新型产品。如 士公司的 11些产品将 成了带有各种应用的新型变频器。 4 位 示 上位机通信 四位独立式键盘 频器 频) A/D 转换 D/A 输出 压力传感器 频) 调节水压 专用变频器 水泵电机 管道 压力传感器 压力给定 5 方案论证 方案一的工作流程是 80设定值与压力反馈值进行 统通过压力传感器将电器部分与泵组联系起来,构成闭环系统。运算结果以0现恒压供水。 方案二整个系统的具体工作流程为:系统通过安装在出水总管上的压力传感器,将供水管网的非电量信号 (动态压力 )转变成电信号,输入至供水控制器的输入模块,信号经单片机运算处理后与设 定的信号进行比较运算,得出偏差值,再经过 将其转换成模拟信号,由系统的输出部分输出变频器的频率设定值至变频调速器,变频调速器控制水泵的转数来调节管网内的实际压力值趋向于设定压力值,从而实现闭环控制的恒压供水。对于多台泵调速的方式,控制器控制泵站投运水泵的台数及变量泵的运行工况,并实现对每台水泵根据 切换及变频运行。系统通过计算判定目前是否己达到设定压力,决定是否增加 (投入 )或减少 (撤出 )水泵。即:当一台水泵工作频率达到最高频率时,若管网水压仍达不到预设 水压,则将启动令一台工频泵运行,(此设计只用两台电机且功率达到设计要)此后,往复工作,直至满足设定压力要求为止。反之,若管网水压大于预设水压,控制器控制变频器频率降低,使变频泵转速降低,当频率低于下限时自动切掉一台工频泵或此变频泵,始终使管网水压保待恒定。总之,系统可根据用户用水量的变化,自动确定泵组的水泵的循坏运行,以提高系统的稳定性及供水的质量。系统系统由变频器、控制器、传感器、主副两个水泵电机及相关电气控制设备集成而成。 该变频恒压供水控制器以单片机为核心,在水泵的出水管道上安装一个压力传感器,用于检 测管道压力,并把出口压力变成 0到单片机系统的 A/经 A/入单片机进行数据处理。单片机经运算后与设定的压力进行比较,得出偏差值,再经 D/5入变频器中,以控制其输出频率的大小,以此改变水泵的电机转速,从而达到控制管道压力的目的。当实际管道压力小于给定压力时,变频器输出频率升高,电机转速加快,管道压力升高;反之,频率降低,电机转速减小,管道压力降低。其变过程可以表示如下:检测压力(下降)控制 器输出(上升)变频器频率(上升)电机转速(上升),反之相反,最终达到恒压。 方案三由专用变频器与 类变频器的功能虽然强一些,但是价格比通用变频器却要高很多。此种类型供水设备的花费不光体现在变频器上,还体现在 场上 其工作时需要专业人员通过变频器的控制面板,在变频器的 经过现场调试校 6 正,设备才可以正常运行。整个操作过程都必须有专业人员的界入。因此,通用性不好,这是这种变频恒压供水方案的另外一个缺点。 综上所述,其有下面两个缺点。 1价格比较昂贵,不适合小型用户的使用。 2调试不方便,需要专业人事到现场进行调试,这也增加了人力的投入资本。 方案选择 方案二 采用压力 传感 器反馈电 压 信号( 0 变频器 中央处理器 ( 经 输出频率的大小由作用 电机的转速自动增加或降低;当 变频主 电机由 变频器 拖动运行至 最大频率 ,压力 如还 不能达到设定的压力值 ,则 动 定频副 电机, 以期 保持供水压力恒定。这样不但减小了电动机的无功功率,而且提高了水泵的工作效率,节约了能源。采用变频控制方式;其操作方便,无须手动调节进水阀门;启动噪音低,由于启动电流很小,减小 了对电网的冲击,保护了用电设备。 而且其系统实现起来比较简单,并且系统价格相对来说也比较便宜,所以本次设计将采用方案二。 7 3 单元模块设计 本节主要介绍系统各单元模块的具体功能、电路结构、工作原理、以及各个单元模块之间的联接关系;同时本节也会对相关电路中的参数计算、元器件选择、以及核心器件进行必要说明。 各单元模块功能介绍及电路设计 本系统主要分为 9个单元模块,它们分别是:水管压力测量模块、时钟模块、复位模块、按键接口模块、 A/D/示模块、稳压电源模块 。各单元模块功能及相关电路的具体说明如下。 水管压力测量模块 3142 O D O D E 38 2 O D 1 1 05 1 12 2R 1 31 0 管压力测量电路 要测量出水管的电压就需要压力传感器。本次设计采用压电传感器来测量水管压力。压阻式传感器是利用晶体的压阻效应制成的传感器。当它受到压力作用时,应变元件的电阻发生变化,从而使输出电压发生变化。一般压阻式传感器是在硅膜片上做成四个等值的电阻的应变元件,构成惠斯特电桥。当受到压力作用时,一对桥臂的电阻变大,而另一对桥臂电阻变小,电桥失去平衡,输出一个与压力成正比的电压。由于硅压阻式压 8 力传感器的灵敏系数比金属应变的灵敏系数 大 50100倍,故硅压阻式压力传感器的满量程输出可达几十毫伏至二百多毫伏,有时不需要放大就可直接测量。另外压阻式传感器还有易于微型化,测量范围宽,频率响应好(可测几千赫兹的脉动压力)和精度高等特点。但在使用过程中,要注意硅压阻式压力传感器对温度很敏感,在具体的应用电路中要采用温度补偿。目前大多数硅压阻式传感器已将温度补充电路做在传感器中,从而使得这类传感器的温度系数小于 量程。如图 3 时钟模块设计及与器件选择 S T A p p 钟电路 时钟电路用于产生单片机工作所需要的时钟信号,单片机 本身就是一个复杂的同步时序电路,为了保证同步工作方式的实现,电路应在惟一的时钟信号控制下严格地按时序进行工作 。该时钟电路由两个电容和一个晶体振荡器组成。 单片机内部,它是一个反相放大器的输入端,这个放大器构成了片内振荡器。输出端为引脚 芯片的外部通过这两个引脚接晶体振荡器和微调电容,形成反馈电路,构成一个稳定的自激振荡器。单片机工作的速度是由时钟电路提供的。在单片机的一只晶振及两只电容就构成了单片机的时钟电路,如图3路中的 器件选择可以通过计算和实验确定,也可以参考一些典型电路的参数。电路中电容 2对振荡频率有微调作用,通常的取值范围 30 10英晶体选择 62结果只是机器周期时间不同,影响记数器的记数初值和运算速度。 复位电路的设计 单片机的 位信号是高电平有效的持续时间应为 2个机器周期以上。复位后,单片机内部各部件恢复到初试状态,单片机从 000片机复位电路设计的好坏,直接影响到整个系统工 9 作的可靠性。许多人在设计完 单片机系统,并在实验室调试成功后,在现场却出现了“死机”、“程序走飞”等现象,这主要是单片机的复位电路设计不可靠引起的。在单片机应用系统工作时,除了进入系统正常的初始化之外,当由于程序运行出错或操作错误使系统处于死锁状态时,为摆脱困境,也需按复位键以重新启动。所以,系统的复位电路必须准确、可靠地工作。 p 位电路 单片机的复位都是靠外部电路实现的,在时钟电路工作后,只要在单片机的 4个时钟振荡脉冲以上的高电平,单片机便实现初始化状态复位。为了保证应用系统可靠地复位,在设计复位电 路时,通常使 要 持高电平,则单片机就循环复位。本次设计采用上电自动复位电路。由于 R而使单片机复位。 按键接口模块设计 本系统采用独立式按键,独立式按键的各按键相互独立,每个按键都有一个输入线,各按键的状态互不影响, 适用于按键数量较少的场合。在此电路中,按键输入部分采用低电平有效,上拉电阻保证了按键断开时, I/0口线有确定的电平。在扫描时,先读取 某位为低电平,应先延时 后再读取该位,如 果读得的值仍为低电平,可确认此键已按下,然后调用该键的键处理子程序,各键的优先级别由软件安排。依据本次的设计要求我们大体分析在自动部分需要4个按键,因此我们选择独立式键盘。在电路仿真当中,为了体现效果,把最小步进临时改成了 5。按下启停键后,系统将压力传感器传过来的信号进行转换后进入单片机,显示出当前的水压。按下设置键后,系统显示出设定的压力值,如果对设置的水压进行调整,通过增减键,可以进行单位为 5的调整。 如图 3路由 4个按键和 4个电阻组成,按键分别命名为【启停键】、【设置键】、【增一键】和【减一 键】,共四个键,电阻可以采用 9脚排阻( 8 10 【启停键】功能:启动 /停止,执行开始自动运行和停止功能; 10 【设置键】功能:设置,与【加一键】和【减一键】键配合对压力进行调整,开始设置。 【增一键】键功能: +1,与【设置键】键配合对压力进行调整,【加一键】键每按下一次则进行数据进行 +1 操作。 【减一键】键功能: 【设置键】键配合对压力进行调整,【减一键】 键每 按下一次则进行数据进行 A 23456789 1R P 1 P A C K - 8启停键设置键增一键减一键图 3键接口电路 A/D 转换模块 计算机、数字通讯等数字系统是处理数字信号的电路系统。然而,在 实际应用中,遇到的大都是连续变化的模拟量,因此,需要一种接口电路将模拟信号转换为数字信号。A/由于压力传感器传过来的信号为模拟信号,在接入前要加 A/次设计采用常用的 A/如图 3 11 A D 0A D 1A D 2A D 3A D 4A D 5A D 6A D 7A D E N S S E ( C L O C K )O U T 121A D D D D E F ( + )12V R E F ( - )16I N 31I N 42I N 53I N 64I N 75S T A R T 58E O O C T 220O U T 714O U T 615O U T 817O U T 418O U T 319I N 228I N 127I N 026A L D C 0 8 0 9图 3( B Y 1 /B Y 2 )19U 1 208 3 2 A M D/A 转换电路 D/入寄存器及 存器)。这样可以在输出的同时,采 集下一个数字量,以提高转换速度。如图 3 12 显示模块设计 但片机应用系统中,通常都需要进行人 机对话。这包括人对应用系统的状态干预与数据输入,以及应用系统向人们显示运行结果等。显示器、键盘电路就是用来完成人机对话的人 机通道。本次设计中要求作到 4组 此在选择 定要先确定显示方式。若选择静态显示,则 要驱动器的驱动能力与显示器电流相匹配即可。而且只须要考虑段的驱动因为共阳极接 +5V,而共阴接地,所以位的 驱动不要考虑。动态显示则不同,由于一位数据的显示是由段选和位选信号共同配合完成的,因此,要同时考虑段和位的驱动能力,而且段的驱动能力决定位的驱动能力。如图 3 L S 2 4 5图 3显示模块电路 电机控制设计 压力传感器将压力信号经过 A/果压力和设定压力有偏差,单片机将控制变频器调频使压力值稳定, 当 变频主 电机由 变频器 拖动运行至 最大频率 ,压力 如 还 不能达到设定的压力值 ,则 动 定频副 电机, 以期 保持供水压力恒定。这样不但减小了电动机的无功功率,而且提高了水泵的工作效率,节约了能源 。 13 ?5 2 2 2 265412 T O C O U P L E R - N P O D 6 65 62 N 2 2 2 265412U 6 6O P T O C O U P L E R - N P 5D I O D 电机控制电路 稳压电源模块 大部分的电子电路与电子设备都需要有一个稳定的直流电源提供能量,而且对于我们通常所接触的控制器而言,一般都是利用电网提供的交流电源,经过整流、滤波、稳压后,滤去其不稳定的脉动、干扰成分 ,提供一个稳定的直流电压,来使电子电路与电子设备保持正常的工作。并且,我们目前绝大部分电子电路与电子设备都是使用线性电源,即通过降压、整流、滤波、稳压后提供稳定的直流电压给电子电路及芯片工作的。固定式三端稳压电源 (7805)是由输出脚 入脚 它的稳压值为+5V,它属于 输入端接电容可以进一步的滤波 ,输出端也要接电容可以改善负载的瞬间影响 ,此电路的稳定性也比较好 。由于固定式三端稳压电源( 7805)的输出电流有 本次设计电路电流在 1A 到 2虑 到电路的一般余量在 2倍到 3倍左右。故本次设计电源电路需要采用扩流电路,如图 3 14 T R 1B R 12 W 0 6 2 2 2 0 0 u 3 3 u 1 u 6 8 稳压电源电路 采用外接 是一种最基本的扩展电流电路,扩展的输出电流取决于外接功率管的电流负载量,电路中的 调整管组成复合管,设 805的静态工作电流,这时 7805的输出电流为 表示 式中 为 压扩展后的输出电流 。因为 7805的的最大输出电流为 稳压器的扩展后的输出电流为 3A,加一只二极管 1 并联,把外接整流管的 输出电流超过额定植时,保护电阻 然会使 而使 至不导通,这样便达到了保护外接管的目的。电路中的 选用 3 特殊器件的介绍 本系统中主要使用了如下一些功能器件: 变频器。下面就这些器件的功能特点、主要参数和使用方法作相应说明。 变频器介绍 通用变频器的选择包括变频器的型式选择和容量选择两个方面。其总的原则是首先保证可靠地实现工艺要求,再尽可能节省资金。 15 表 3三菱 列标准规格 型号 用电机容量( 注 1) 出 额 定容量( 注 2) 定电流( A) 6 9 12 过载能力(注 2) 150% 60s 200% 时限特性) 电压(注 4) 三相 380V 至 480V 500生制 动转矩 最大值允许使用率 100%转矩 2%源 额定输入 交流电压、频率 三相 380V 至 480V 500流电压允许波动范围 323 至 528V 500许频率波动范围 5% 电源容量( 注 5) 12 保护结构( 030) 封闭型( 注 6) 冷却方式 自冷 强制风冷 大约重量() 连同 据控制功能可将通用变频器分为三种类型:普通功能型 V/有转矩控制功能的高性能型 V/称无跳闸变频器)和矢量控制高性能型变频器。变频器类型的选择要根据负载的要求进行。对于风机、泵类等平方转矩,低速下负载转矩较小,通常可选择普通功能型的变频器。对于恒转矩类负载或有较高 静态转速精度要求的机械采用具有转矩控制功能的高功能型变频器则是比较理想的。因为这种变频器低速转矩大,静态机械特性硬度大,不怕负载冲击,具有挖土机特性。为了实现大调速比的恒转矩调速,常采用加大变频器容量的办法。对于要求精度高、动态性能好、响应快的生产机械(如造纸机械、轧钢机等),应采用矢量控制高功能型通用变频器 。 大多数变频器容量可从三个角度表述:额定电流、可用电动机功率和额定容量。其中后两项,变频器生产厂家由本国或本公司生产的标准电动机给出,或随变频器输出电压而降低,都很难确切表达变频器的能力。选择变频器时 , 只有变频器的额定电流是一个反映半导体变频装置负载能力的关键量 。负载电流不超过变频器额定电流是选择变频器容量的基本原则。 调速范围不大的情况下,选择较为简易的 V/F 控制方式的变频器。当调速范围很大时,应考虑采用有反馈的矢量控制方式。 对于负荷变化时其转距仍然随负荷变化。当转矩变动范围不大时,可选择较为简易的 V/对于转矩变动范围较大的负载,应考虑采用无反馈的矢量控制方式。 16 考虑选择较为简易的 V/在要求较高的场合,则必须采用有反馈的矢量控制方式。 在众多变频器中基于运行可靠性、价格适中我们选定三菱公司出品的 式( 3所要求的调速范围 90 1500r/们可以计算出变频的范围: 60 29060m ( 3 060 2150060m a xm a x ( 3 即频率的 调节范围为 间,另外,考虑到此前我们选用的 变频电机其标称功率 P=定电流 于三菱公司的 上表 3选用 绍 下面我就把 片各引脚功能介绍一下,图 3 许输入锁存。 选信号。它与 。 信号 1。在 它将数字输入并锁存于输入寄存器中。 信号 2。在 它将输入寄存器中的数字传送到 8位 送控制信号,用它来控制了 控制多个 8位数字输入, 。它是逻辑电平为 1的各位输出电流之和。 。它是逻辑电平为 0的各位输出电流之和。 馈电阻,该电阻被制作在芯片内,用作运算放大器的反馈电 阻。 准电压输入,可以超出 10片用于四象限乘时,为模拟电压输入。 辑电源。 +5V +15V,最佳用 +15V。 17 V 8G 1245679G 11I O 1213141516X F E 218I L E ( B Y 1 /B Y 2 )19图 3脚图 拟地。芯片模拟信号接地点。 字地,芯片数字信号接地点。 1”时,寄存器的输出随输入变化;当 0”时,数据锁存在寄存器中,而不再随数据总线上的数据变化而变化。若 1”、 0”与 0”时,使输入寄存器的 1”,当 1”时,输入寄存器 便将数据锁存。同样。若 0”且 0”时,使得 E=“ 1”, 输入寄存器中的信息锁存在 存器中。图中的 外部运放提供反馈电阻,用以输出适当电压。 是外电路提供的 +1010两个电流输出端。欲将输入数字量转换为模拟量,只要使 0”、 0”, 1”,可完成一次转换。或者使 0”, 0”, l”,即输入寄存器为不锁存状态,当 可达到同样目的。 绍 1主要特性 1) 8路 8位 A D 转换器,即分辨率 8位。 2)具有转换起停控制端。 3)转换时间为 100s 4)单个 5 5)模拟输入电压范围 0 5V,不需零点和满刻度校准。 6)工作温度范围为 85摄氏度 7)低功耗,约 15 2外部特性(引脚功能) 18 026m s b 2 220 1272 418 2282 615 312 b 2- 817 42E O 53A D D 64A D D D 75A L f( -)16E N A B L A R f( + )12C L O C D C 08 0 9 图 3脚图 8 条引脚,采用双列直插式封装,如图 3面说明各引脚功能。 8路模拟量输入端。 228位数字量输出端。 址锁存允许信号,输入,高电平有效。 A 入,高电平有效。 A 出,当 A D 转换结束时,此端输出一个高电平(转换期间一直为低电平)。 据输出允许信号,输入,高电平有效。当 A 端输入一个高电平,才能打开输出三态门,输出数字量。 钟脉冲输入端。要求时钟频率不高于 640 +)、 -):基准电压。 源,单一 5V。 。 先输入 3位地址,并使 ,将地址存入地址锁存器中。此地址经译码选通 8路模拟输入之一到比较器。 降沿启动 A 后 示转换正在进行。直到 A 示 A 果数据已存入锁存器,这个信号可用作中断申请。当 时, 输出三态门打开,转换结果的数字量输出到数据总线上。 3内部结构 19 表 3 道选择 C B A 选择的通道 0 0 0 0 1 1 0 1 1 0 0 0 1 1 0 1 1 路模拟开关 、 一个地址锁存与译码器、一个 A/路开关可选通 8个模拟通道,允许 8路模拟量分时输入 ,共用 A/态输出锁器用于锁存 A/ 时,才可以从三态输出锁存器取走转换完的数据。 A D 转换器的主要技术指标是转换误差、分辨率、转换速度 。 转换启动信号。当 有内部寄存器清零;下跳沿时,开始进行 A/转换期间, 明转换结束;否则,表明正在进行 A/于控制三条输出锁存器向单片机输出转换得到的数据。 1,输出转换得到的数据; 0,输出数据线呈高阻状态。 有时钟电路,所需时钟信号必须由外界提供,通常使用频率为 500), )为参考电压输入。 道选择表如表 3示。 20 图 3片的内部逻辑结构 74绍 4L S 2 45 图 374脚图 74我们常用的芯片,用来驱动 者其他的设备 ,用法很简单如上图 ,这里简单的给出一些资料,他是 8 路同相三态双向总线收发器,可双向传输数据。 74既可以输出,也可以输入数据。当片选端 /电平有效时,8 位A/D 转换 器 路 A/D 转 换器 A B C 址锁存与译码 1 3 5 7 态输出锁存器 E ) ) 21 0”,信号由 B 向 A 传输; 1”,信号由 A 向 B 传输;当 /高电平时,A、 B 均为高阻态。 单片机 司生产的低电压,高性能 位单片机,片内含 428器件采用 易失性存储器技术生产,兼容 内置通用 8位中央处理器( 储单 元,功能强大。 p 1 . 0p 1 . 1p 1 . 2p 1 . 3p 1 . 4p 1 . 5p 1 . 6p 1 . 7R S . 0p 3 . 1p 3 . 2p 3 . 3p 3 . 4p 3 . 5p 3 . 6p 3 . 7X T A L 1X T A L 2 . 0p 0 . 1p 0 . 2p 0 . 3p 0 . 4p 0 . 5p 0 . 6p 0 . 7E A /V P E . 7p 2 . 6p 2 . 5p 2 . 4p 2 . 3p 2 . 2p 2 . 1p 2 . 01234567891011121314151617181920 2040393837363534333231302827262524232221A T 8 9 C 5 1图 3单片机引脚图 主要性能参数:与 4静态操作 02432个可编程 I/O 口线、 2个 16位定时 /计数器、 6个中断源、低功耗空闲和掉电模式。 引脚功能: 源电压 位漏极开路型双向 I/O 口,也即地址 /数据总线复用口,作为输出口用时,每位能吸收 8个 端口写 1可作为高阻抗输入端用。 在访问外部数据存储器或程序 存储器时,这组口线分时转换地址和数据总线复用,在访问期间激活内部上拉电阻。 22 在 0口接收指令字节,而在程序校验时,输出指令字节,校验时,要求外接上拉电阻。 位双向 I/个 端口写 1,通过内部的上拉电阻把端口拉到高电平,此时可作输入口。作输入口使用时,因为内部存在上拉电阻,某个引脚被外部信号拉低时会输出一个电流。 位地址。 位双向 I/个 端口写 1,通过内部的上拉电阻把端口拉到高电平,此时可作输入口,作输入口时,因为内部存在上拉电阻,某个引脚被外部信号拉低时会输出一个电流。 在访问外部程序存储器或 16位地址的外部数据存储器时, 位地址数据。在访问 8位地址的外部数据存储器时, 线上的内容,在整个访问期间不改变。 位双向 I/个 1是,它们被内部上拉电阻拉高并作为输入口。作输入端时,被外部拉低的 表 3 第二功能 端口引脚 第二功能 行输入口 行输出口 中断 0 中断 1 时 /计数器 0 时 /计数器 1 部数据存储器写选通 部数据存储器读选通 ,更重要的用途是它的第二功能,如下表所示: 位输入。当振荡器工作时, 部访问允许。欲使 注意的是:如果加密位 位时内部会锁存 如 23 引脚加上 +12然这必须是该器件是使用 12 荡器反相放大器的及内部时钟发生器的输入端。 荡器反相放大器的输出端 . 各单元模 块的联接 完成各模块的设计后,模块按照功能的不同连接成整体的电路图。各模块的具体联接图见附录一。 24 4 软件设计 软件设计原理及设计所用工具 软件的主要功能是根据系统的工作原理,框图,先制定各部分程序的流程图,然后再根据流程图编写各部分程序,通过调试各部分程序运行正确无误后,再进行主程序的调试,看是否能实现预期的功能。 系统能否完全正常工作,最主要的也是最关键的是看软件程序是否正确,它关系到系统功能的实现,可以说,软件是一个系统的灵魂。 本设计所使用的软件工具如下: C/C+; 51是美国 1系列兼容单片机 是目前最流行开发 80供了包括 汇编、连接器、库管理和一个功能强大的仿真调试器等在内的完整开发方案,通过一个集成开发环境( 这些部份组合在一起。 与汇编相比, 构性、可读性、可维护性上有明显的优势,因而易学易用。用过汇编语言后再使用 会更加深刻。 51软件提供丰富的库函数和功能强大的集成开发调试工具,全 外重要的一点,只要看一下编译后生成的汇编代码,就能体会到 51 生成的目标代码效率非常之高,多数语句生成的汇编代码很紧凑,容易理解。在开发大型软件时更能体现高级语言的优势。 51语言编译工具都是以 此,一种 需将部分与硬件相关的地方和编译连接的参数进行适当修改 ,就可方便移植到另外一种系列上。也就是说,基于 性。 用 灵活管理 ,分工合作以及后期维护,基本上可以杜绝因开发人员变化而给项目进度 ,后期维护或升级所带来的影响。从而保证整个系统的品质,可靠性以及可升级性。 主程序流程图 恒压供水控制器对生活供水、消防供水系统进行监控,要求软件具有高可靠性、高稳定性、高抗干扰能力,检测信号准确,有良好的动静态性能,该软件按结构化流水设计,分为若干功能部分,采用 C 语言编写。本设计的软件主程序用来动态显示系统的压 25 力,压力的采样和系统的控制环节都在中断处理程序中 , 主流程图如图 4 图 4程序流程图 主要包括: A/D/制程序。 程序流程图如下:如图 4频器控制 标志位为 1 A/其主要任务是把压力传感器检测的压力转换成数字量,并送入单片机处理,程序见附录。 2 D/其主要任务是把经 控制变频器输出电压的频率,来控制水泵的转速,以达到控制供水压力的目的。 主程序初始化 ,开 断 ,设置 10中断 压力的动态显示 按键处理子程序 Y N 是否键按下 开始 26 图 4断服务程序流程图 读 A/D 转换器 返回 Y 进入 节 是否为最大值 标志位 否为 1 是否为最小值 标志位 否为 1 N Y Y 置标志位 1, (开 机 )。 节数据送 D/A 转换器 清标志位 0 ,(关 机 ) N N N N Y 27 3 节程序 本设计就是通过单片机实现的 节器来实现水压的恒定,并自动调节水泵的数量。 在工业控制过程中,目前采用最多的控制方式仍然是 式。 几个重要的功能:提供反馈控制;通过积分作用可以消除稳态误差:通过微分作用预测将来。由于制器具有简单而固定的形式,在很宽的操作条件范围内,另一方面是因为 制器允许工程技术人员以一种简单而直接的方式来调 节系统性能 ,其程序见附录。 数字 制算法通常分为位置式 制算法和增量式 制算法。随着计算机技术的发展,在控制工程中,用计算机 制算法来实现数字 制器,组成计算机控制系统。可以灵活的改变 数,同时可以改变控制策略来达到控制目的。这是模拟 制器中所无法实现的。这里所说的控制策略是数字 改进算法,如积分分离 制算法、不完全微分 制算法、微分先行 制算法和带死区的 制算法等。在各个控制阶段采取各种控制方法,以此来获得控制目标。本设计采用 增量式 制,下面把增量式 制算法介绍

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论