资源目录
压缩包内文档预览:(预览前20页/共32页)
编号:1133774
类型:共享资源
大小:1.29MB
格式:RAR
上传时间:2017-04-03
上传人:机****料
认证信息
个人认证
高**(实名认证)
河南
IP属地:河南
30
积分
- 关 键 词:
-
套件
注塑
模具设计
cad
图纸
以及
说明书
仿单
- 资源描述:
-












- 内容简介:
-
毕业设计(论文)译 文 0 一种面向对象的注塑模关联冷却水道设计工具 摘要 为了短期产品研发周期的需求,要求注塑模具设计师压缩他们的设计时间和能适应更多的后期更改。本文介绍了 一种嵌入在冷却水道模块内的模具设计软件包内的关联设计方法 。它对冷却回路提供了一系列全面的对象定义,还给出了平衡或不平衡的设计。这里将对已开发出的 法进行了简要说明。 有了这种新方法,模具设计人员可以轻松地在模具板或插件与冷却系统两者之间做出改变而无需进行繁琐的重复性工作 。因此,这种方法可以有效地减少设计时间和后期设计更改的影响。 关键词 : 冷却回路 塑料模具设计 联设计 设计自动化 1引言 目前,大多数 统还无法完全和明确地捕捉设计意图。丰富的设计信息不能完全由 型来描述,并在产品开发周期的后期的设计更改将引起大量的重复劳动。众所周知, 交互操作性应包括基于知识的工程系统的集成 。然而,没有任何机械能使设计意图信息流通。在注塑模具设计中这种信息差距也是非常明显的。 模具设计人员面临着越来越多的压力来减少设计时间并且还要确保模具质量 。 自 20世纪 70年代初以来各种设计注塑模具的 其中大部分集中在 模流分析及优化算法 。近年来, 模具子系统的设计一直是(研究)的焦点 ,例如凸凹模插件、流道、浇口位置和冷却系统等。对于冷却系统的设计王等 11提出了一个三阶段的策略,与一维近似、二维优化设计、三维设计冷却效果分析设计 。他们已经开发出一种程序, 使用三维边界元法来分析三维热传导 。所有上述提到的工具只能生成一般的几何信息。丰富设计信息的表达和重复利用不同程度地没有提到。 面向对象的软件技术已经应用来满足模具设计信息表示的差距 。在复杂实体中 对象的定义可以提供大量的帮助,特 别是部分独立部件和特征。然而,维持几何实体之间 的关系并使它们可 定 制 还不是一个简单的任务。 可以持久实现几何实体之间关系的 件发展方向被称为相关设计方法 。一种方法是在一个过程向导中建立一个 统的设计意图和过程知识,它基本上是一个应用程序的测试与用户界面的设置结合, 来 引导用户完成特定的计算机系统的相互作用构成。 统就是这 样一个基于流程的向导。本文介绍了 应用于冷却水道的相关设计方法的市场反 馈 ,表明这一概念大大减少了人类知识和计算机一毕业设计(论文)译 文 1 贯表示的差距。 在一个模具中冷却系统不仅影响成型零件的质量而且还影响生产效率。在目前 的实际 生产中,在一套模具中至少有四个主要的冷却回路。它们都位于型腔插件,插件 的型芯,一个 A 板和 B 板。王和 认识到,在设计冷却系统 中有很多参数和设计变量,如位置、 冷却管道类型和三维回路布局,通常需要频繁的修改来解决部分后期设计 中的 变更以及模具 的 优化设计。修改过程耗时且容易出错,因为设计师 需 反复编辑和更新 型。 莫克等 开发了 可以自动检索某些回路模式的冷却系统,如直线型或 U 型冷却回路,但对实体之间的几何关系没有论述 。 莫克等 引 入了 一种冷却系统的专家设计系统。该系统包括了四个层次,布局设计、 分析 、评价和 决策 。一种决策模块根据储存在知识库中的规则对冷却水 道的重新设计进行 了 评估。然而,没有综合与参数化的 统。 总之,高效率和用户友好 型的冷却系统设计工具是备受追捧的,这样的系统可以达到令 模具设计师从繁琐的更新和保持设计模型一致中得到解放的预期,使模具设计周期的总时间缩短。本文介绍了 提供冷却和 它们之间的散热孔 面回路所产生大量的相关链接的自动化的冷却水 道的设计工具 。 用与把握设计意图的相关问题 在工业生产中,通常冷却水 道是以冷却回路的形式构成的,但孔特征作为具 的代表。另一方面,经验丰富 的设计人员发现经常用圆柱体来代替冷却水 道。在后一种方法中当设计完成时所有的管道都连接起来形成一个冷却回路。在 析工具的帮助下用这种连接回路能对冷却效果进行评估。这些不能转化为孔直到设计工作完成的回路是为 具 路径的产生做 准备的。用这样的表现形式,一个 统可以显示或绘制自视检查的冷却水 道,而不 显示凸模或凹模插件 和模具板的细节特征。 与孔特征相比重新定位和修改实体需要更少的步骤。它能自动检测冷却水 道和其它模块之间的功能如型腔和销孔碰撞。 然而 , 圆柱体冷却水 道的代表形式有几个问题。首先,许多 步骤仍需要一个简单的通道,如创建一个圆柱体,在一个情况下 的倒角中的盲孔盲端 ,并通过一系列的对话方块的位置和朝向运行。通常,冷却回路有很多的管道,所以它们的创建需要很多的重复命令。当需要修改时要再次对圆柱进行重复编辑。这种情况很容易出错。其次, 在冷却水道中对自动传热分析或碰撞检测是很重要的。第三,在用户友好的操作方式中它们不能为插头喷嘴或挡板插入冷却水 道提供方向信息。因此,模具设计师被繁琐的步骤所困扰。 却系统中的语义定义 一种面向对象的软件设计方法可用于解决上述一节中讨论的问题。它提供独毕业设计(论文)译 文 2 立的 冷却系统动态更新的定义 , 对 冷却系统的验证 是必不可少的一种对象类型或种 类的集合。在图 1 中,显示了简化的冷却系统结构及相关组件的类型。每个组件类型被定义为一个对象类。 冷却水 道被定义为其中包含冷却液(在大多数情况下是水)的 连续直孔。它可以包含在一个单一的模具组件(片或插件 ),或贯穿几个。本文 中 “孔” 是用来 描述在一个单一的模具组件的冷却水 道 中 的几何形状,但其表现 与传统的孔特征是不同的 (见下一节)。如图 2 所示是 冷却回路的一个例子。 1是冷却水道。一个冷却回路代表连接在入口和出口之间的冷却水 道。几个冷却回路形成一个冷却系统。在图 2 中孔 1同形成了一个冷却回路。一个回路 可有几个不同方向的冷却水 道。 这些管道由从不同模具板和插件 面的钻孔的冷却孔组成。一个用于钻孔的面称为穿透面。当然,冷却孔有一个穿透面和钻孔量总从渗透面指向另一端。通常情况下,冷却孔垂直穿透面。然而,为了适应某些特殊情况,这种限制是不影响本文目的的。 图 1冷却系统的结构 毕业设计(论文)译 文 3 图 2 冷却回路的例子 在实际中, 如图 3 中的一个例子 冷 却 水 道跨越 了 多个块 。它由 几个 连接的共线散热孔(孔 1,孔 2,孔 3)。 这样的 管 道被专门命名 为 彩色线性冷却 水 道。 在许多情况下 , 多印象设计用于模具布局。有两种方法来 建立 冷却回路 即 :平衡和不平衡。如果同样的冷却回路模式适用于每一个印象 ,则 冷却系统被称为均衡。否则,冷却系统是不平衡的。通常,如果模具是一个平衡的多模式设计的印象 14,设计者希望有印象的每个部分 是 相同 的 冷却回路, 则 平衡的方法 被 使用。在这种情况下,因为每个 回 路设计主要用来 满足 一个印象, 来 满足 传 热要求的 冷却效果会更好控制。这是 为 特别复杂的成型件推荐 的 可 利用仿真优化包 的 冷却方法 11。采用这种方法, 功能 可以普遍满足 模具设计师在冷却回路格局 上的个 人 的变化 需求 。 毕业设计(论文)译 文 4 图 3典型的共线冷却管道 另一方面,设计者可 以把模具作为一个整体看待而不考虑冷却回路的印象模式设计, 如果这样的话,他可以 采用 不平衡的 方 法。 细的陈述 在图 4 中给出了 冷却系统的一个组成部分的详细结构 。 用一条直线 和一个 任选的圆柱体 代表一个洞 。这 种 直线 被称为孔冷却的引导线 。更确切地说,一个冷却的 引导线 是 从 冷却透孔中心点到 末端 孔中心点出发 的直线 。 在图 2 中, 孔 1 的冷却引导线 , 而 孔 2 的引导线 。 引导线 包括钻孔载体。 如图 5 所示 在每个散热孔的开始和结束点,孔两端可以选择以下类型:( 1)末端为通孔型 ( 2) 末端为盲孔型 ( 3) 台阶型末端 ( 4) 交叉盲孔型 。 这些几何特征信息表示为 附加 属性 指引。如果它 基于储存在每个 引 导 线中的信息,就可以随时生成圆柱形实体。 传统上,冷却线也被用来表示一个冷却回路 11,但它们是从 被包含的实体中分离出来的,例如模具板和插件 。本文中的设计思路之一是 每一个 引 导 线 的开始和结束点 都 与 穿透和退出的 面 相关 ,除了 末端为 盲孔的终点。 因此,如果这些面 的位置 改变 了 ,相 应 的点 将 得到很大的 更新 和变化 。 换句话说,冷却 引导线 总是与穿透和退出的面 有关 。 毕业设计(论文)译 文 5 图 5冷却管 末端类型 在冷却回路中 所有的内孔的冷却 引导线作为指导路径进行分组 。 在图 2 中有五 条引导线 和 ,形成引导 路 径。在本文中,如图 4所示,引导路径 完全 代表 一 个冷却回路冷却时可以有 一定的准则来描述 冷却孔类型直径等 的属性 。 事实上,冷却圆柱体仅在需要 时 进行查看检查不同功能 /组件的物理碰撞或创建基于板或插件的功能时 生成。这些冷却固体可以去除来简化,只要引导 导路径可行,这些冷却固体 就 可以再生。 稍后阶段,在确认冷却系统的设计 中 , 然需要几何孔 。 它们可以通过减去其相应的 冷却板/插入机构的固体来获得。 一 个引 导路径也用来维护其 线路 之间的连接。 在指导路径中定义了一种 验证和核实这一条件 的 一个 “ 特殊 ” 的方法。 这个 共线冷却 水 道 是创建 的 “ 特殊对象类型 ” 。 从图 4 中 可以看出,一个冷却回路 包含 可共线的冷却 水 道以及简单的 管道。每个通道都可以 由一组被叫做共线指引的引导线来表示 。 显然,它的元素 引导线 必须从头部到尾部不断沿着一条直线 连接起来 。在图 3 中 , , 及 形成路径和代表共线 的 通孔 1( 台阶型通孔 )通孔 2 盲孔 3。可以看出,在一个冷却回路 中 冷却元件相关联,因为它们是可以立即 进行 任何改变 的 。 如图 4 所示 ,回路的 内容和对象根据上下文和用户的选择变化,例如,一个 回 路可以 作为一个 相互 关联 的 引导线 或作为一个圆柱体集。一个冷却回路 能在丰富的属性形式中自行确定几何与非几何的信息。 总之, 在 此对象的结构设计 中 ,冷却 水 道及其相关模具板或插 件 可以自动更新如果诸如 穿透 面或钻 孔 元素 的某些类型能 在后面的设计阶段 进行 修改。由于所有的冷却 水 道 用相关联的方法创建 , 在一个回路中 如渗透面钻孔 方向 可以嵌入毕业设计(论文)译 文 6 型和持久存储 。 2 执行方面 入链接和参数 在这个模块冷却设计 集中,引导线最初是通 过用户界面创建的 。为了把每个引导线的开始和结束点与渗透和退出面及 盲孔联系在一起就出现了一个智能点。一个智能点在表面上是和内核与数据库面相关的点。它能与相应面保持持续的联系。在这里“智能”一词 表示一个实体关联到其 它 相关实体的性质 。 由于 这些 引导线 是建立于智能终点 上的 那么 连通引导线 也称为智能线。 它们每个都是由 一个(盲孔)或两个(通孔) 连接在一起的。 一个冷却圆柱体可以沿着一个圆形扫描的智能方针 自动生成 , 对于盲孔锥孔需 增加。对于冷却回路圆柱体作为固体的代表。这些几何特征代表引导线的属性。这些相关属性包括末端的类型 、 冷却孔直径深度和台阶直径部分。它们用于冷却孔的编辑和冷却孔的再生。 能和算法 已经 开发 出的 这个模块 的 主要功能 是 满足冷却系统的设计 , 在 这里列出的要求: a 增加形成 引 导 路径的智能引导线 b 修改或重新定位引导线 c 删除引导路径回路 d 创建冷却固体 e 修改冷却固体 f 删除冷却固体 g 建立平衡或不平衡的冷却 固体印象模具设计 建和编辑一个冷却回路的智能引导路径 要创建一个引导 路 径 的 第一 引导线 ,用户需要 在预期的固体上 选择一个面 作为 穿透 面 (平面)的 回路 入口(见图 2)。一个平面方程可以提 供 出选定的平面。在面上 最初的 引 导路径的启动 点 把 用户的指示点为基础, 然后创建 一个 智能 点。引导第一次降温过程生成的 默认 方向 的相反方向能 在图形窗口中显示。用户可以由图 6 所示的界面活性 变化的引导线的方向, 交互地修改初始点的位置。 然后,用户可以动态拖动冷却线或输入 一个盲孔的 引导线的 长度值或选择另一面说明通孔结束的 面 。在后一种情况下, 在 引导线 的终点 另一个 智能 点会被创建。 在创建第一引导线时, 一个序号“ 1”会显示在它附近。 为 创建下一个 引导线 (见图 2),一 个钻孔 是必需的。用户可以显示底部渗毕业设计(论文)译 文 7 透在 p 点的 面 ,然后,下一个指引方向 将 设置在选定的 面 扭转法线方向 上 。 在这项工作 的 实施 中 向量的起点 C 的 确定 是 参照前 面的 导线 和最近点到用户的P 点 来 表示 的 一个嵌入式规则。 为了使向量定义的用户友好 ,很多这样的 潜在 “规则” 适用于协助指导创 建 。在这种情况下,当 定义 导线和 以前的 ,它 能 自动延长到底部钻 孔 的 C 点。 智能 点是建立在 与引导线相关的面上的 C 点上 。同样,序列号 “ 2” 显示 在 引导线 的附近 。用户还可以通过选择一个工作定义坐标方向 +X, X, +Y, Y,+Z, Z 然后指示 出引导线的 下 个 起点。用 类似的方 法 ,一个完整的 指引 路径可以被定义。当确认所有的 指引 路径的引 导线 时 ,路径的连续性 可以在这种方法中验证 (见图 4)。 该指引路 径 被 当作一个单一的实体。 正如预期的那样, 引导线 可以创建或加入一个由 能 的 引导 路径。现有的 引导线 也很容易被删除 。 在互动的 定义 引导线 之间 , 在相应的分支机构的算法中 用户的输入参数和序列是 不同的 。例如,要创建一个简单的盲孔,用户 可以 选择 的 序列可以是下列三个选项之一:( a) 仅仅是一个渗透面 ( b)渗透 面和 现有的垂直于参考 的 散热孔,以及( c )仅仅是现有的共线 冷却孔 。 在 每个选项 下 ,用户的选择序列 是有区别的 , 必要的调整 能使引导线达到 保持引导路径连接 的 预期 目的 及 友好的用户界面设计。 如图 6冷却后的 引导线 , 它的性质 包括它的长度都显示在同一用户界面 上 。这些是可以改变和更新 的 。事实上,当 引导线被选中 ,其指导路径也 就 确定。这是因为 在一个引导路径中 所有的 引导路线是 连续性的 约束 。如果引 导 路径入口点的位置被移动, 则 整个路径 也相应的变化 。用户可以通过 有关项目从编辑界面中选择安全删除引导路径。 在定义一个引 导 路 径 时 , 则 冷却固体 基于个体 引导线的属性生成 。 冷却固体仅当用户需要 它 们 时 创建 。如图 4所示冷却 水 道可以有不同的孔类型。 这些类型可以表示为 首 端 和末端 相关的冷却 固体的 特征 。 如图 7所示 的用户界面 实现了这一目的 。最初,用户界面 的 设置,如启动类型 、 结束类型 、 孔直径等参数 用 默认类型 分配 ,并在 用户界面 上 配置文件中的预设 值 。然后,他们 以 用户的输入为基础 更新 。 当用户重复操作 时 在此配置文件中的值始终在与用户的首选值写在它“接受”的用户界面对话框中 ,以便 使 用户界面的设置可以被更新 。 由于 对话框的不同,也 有 对预设条件验证领域的项目,例如, 台阶 孔的直径必须大于孔径。这是当用户调用点击 “ 确定 ” 按钮 时, 在这种方法中 这些检 查函数 称为 冷却固体的“验证” (见图 4),。如果输入 验证 不被接受, 就 会出现 一些 错误信息 的提示。这些属性一旦得到证实通过点击 “显示冷却水 道关系”按钮可以自动生成冷却固毕业设计(论文)译 文 8 体的 冷却固 体可以在任何时候被删除,但类型和参数仍继续将其作为个体 指引线的附加属性 ,因此冷却固体 可 在任何时候可再生。然而,如果用户删除一切引导路径,则冷却回路 就 被完全删除。在更多的细节 上,实体生成算法建立了以 下六种孔的类型:简单盲孔、简单通孔、台阶孔、台阶在通孔一端、台阶在通孔两端、通孔,最后,共线固体冷却水道能穿过多个固体。其它编辑和删除冷却水 道的算法很简单。 对于一个共线冷却水 道,有个别 孔由共线连接获得。图 3说明了它们是如何关联的。假设孔 1(从左到右)的创建是通过“选择两个平面创建台阶孔(两端)”从 住”面 1和结束点 B“绑住”面 2则 面 1和面 2是固体 1的一部分。这些面的任何修改 都 将会影响孔的深度 如抵消它们 。 创建孔 2有更多的灵活性。用户可以创建以下两种方法。在第一种方法中面 3和面 4(属于固体 2) 可作为参考选择,因此启动点 分别是面 3和面 4上的点。因为这个孔应 是共线管道的其中一部分,面 2与孔 1的结束点 与面 3有关。这是保证共线管道的对象的验证方法。因此, 第一个孔 可 以沿着面 2滑动 通过创建两个对齐孔不打乱中间的孔。在第二种方法中,第一个孔是用来作为参考,那么起点 的终点,由于 沿着 面 2滑动的第一个孔被修改则中间孔将随着 变化。一旦 面 3也将更新。这两个孔之间 的智能连接由嵌入式的多 个共线冷却水 道固体建立。同样,在图 3中第三盲孔由左到右建立,共线的冷却水 道由三个相关的冷却孔获得。 理平衡和非平衡冷却回路 在本文中,模具元件由装配树结构组成,当用户 初始化一个新的模具设计项目时它会自动创建。原来的塑料部分被分配到 装配上的一部分,被称为 产品的一部分(生产部分)(见图 8)。印象储存在 产品的一部分 作为 实例化组件与 布局模式(凸模 /凹模 插件) 。这是一个在装配上专门用于冷却固体自动创建的部分 。它被称为冷却线( 分。 为了解决平衡与非平衡冷却回路的设计问题,突变实体的概念必 须被先介绍。这项功能可为几何实体例如:实体、面、线、点等, 以便 使 在装配中的不同部分相关联。这是通过复制从一部分到另一部分 具有持续关联的实体获得的 。这些复制的实体被称为突变实体。当一个源实体被修改,其相应的突变实体 也 会自动更新。源实体被称为原型实体。图 9 中所示了一些在装配 中可能突变的面。 假设原型面 A 是元件 1 的一部分,则它可以创建一个相应的突变面 它的原毕业设计(论文)译 文 9 型面(子对母),或 对面 对子)。在一个装配建模环境下,另外一个需要解释的概念是工作的一部分,这 将 被看作是定义在创建新的实体的一部分。因此,用户必需明确地选择工作的一部分,以便在其中创建新的实体。 图 8在模具装配树中的冷却线 图 9在装配中两种可能的突变面 在本文中建立平衡的冷却回路,工作部分被设置在图 8 的产品部分中。当用户在凸模 /凹模 插件中选择一个面去创建一个冷却引导线 时 ,一个 突变面(子部分对母部分) 被创建,在产品 中 的部分所有的冷却实体,包括智能点、引导路径和冷却固体在这部分也被创造了。与此同时,在冷却线部分与此相关的引导路径和固体(子部分对子部分) 也 被创建。冷却实体,根据印象模式被复制。该合成的冷却系统在不同的印象模式中会自动平衡。在图 10 中用 了 一个与均衡冷却回路的四印象模式 的实例来说明。 毕业设计(论文)译 文 10 图 10平衡冷却回路的例子 当创建不平衡冷却水 道时,工作的一部分被设置在冷却线的一部分(见图8)。当用户从插件部分选择一个面, 则在冷却线的一部分(子部分对子部分)的突变副本被创建。然后,所 有相关的原型,如智能点、引导路径和冷却实体在冷却线部分被创建。因此, 如果冷却实体的参考面在不同的插件上被改变则 在冷却线部分的冷却实体 可以自动更新 。 这两种方法都是可用的,装配树结构使设计在很大程度上得到了减少。 显然,这个模块的功能可以进一步扩展。由于其是面向对象的设计,它极有可能将这项可以纳入冷却水道设计规则 的 模块与专家系统整合。对其中的一些逻辑规则进行了讨论 【 10,11,15】。作者认为,这应该是今后的研究方向。 本文提出了 在冷却水道设计工具中的一种相关的设计方法 。重点被放 在 独特的引导路径和冷却水道固体交涉上,并在冷却水道和模具板或插件之间的几何相关 上 。相比用于 【 10,11,15】 中的方法,这种方法的优点是 模具设计人员可以更容易的在整个设计生命周期中进行修改 。丰富的信息包括 冷却回路 成员之间的钻孔方向、定位和连接被嵌入相关的 块中 。这些资料 可以支持在高水平知识规则下的相关冷却回路,从表面成型、碰撞检查 到 最近距离的互动。这种方法能有效和高效的应用在模具设计中。 毕业设计(论文)译 文 11 致谢 本文的目的仅是报道研究的方法。 作者承认他们的研究工作正在 进行,本文中主要 由 在新加坡制造技术研究所 ( 工作的主编完成 。 一个 目团队实施软件产品。 R&D 工程师得到在美国 司提供的密切技术支持。 统( 模具导向在 司注册商标 。 本文摘译自 : 中原工学院图书馆 文期刊数据库,论文名称为 An in T. 17 002/ 17 002/17 003003ue to to in a of a a of or or of AD to be in a of It AD 1. is no to an is in as to to AD 970s 2, on 3, 4, 5. of as 6, 7, 8,9, 3, 4, 5 10, et 11 a D to of to 12. a of in is a AD is to as to a is in of a is an of to is 13. in in a of &) T. 39798 2004) 23: 7986In to at in on 14. et 1115 as of of as as is to et 16 as is et 10. A of on in a is no a AD an is a to to be a of AD On to In is to a AE be 11. is AM of a of It as in a as in of a a of in a so of to be is or is to be in a of a to in a of or of to is 1, of a is is an is as a in be in a or it In to of a on a is as An of a is 2. 5 A an an a 2, a A of of or to a is a to 1 of a to in to to is of an of is 3. It , ). is to is to as if is to is is a 14, to an is In is to be to is 11. a is is to in on to as a if is of a 4. A is a an a is a to s 2, AB is , D is . of of be 5: (1) (2) 3) 4) is 3 A 4 of a 2 An of to be if it is on to 11, as or of in is of if be In of as a 2,J, a In as 4, a to or on or be to as as At be or be by is to To a is in is is 4, it be a as as be by a of be to a 3, CD F ( , It be a 4, a to s a be as a of or as of A is in of or if as or at an as a be a a of of a 13. A a on at to on is to or A be by a 13. a a is a as of 5), of if in to 5 of of to of of of of of of or a a of a to a on an as of 2). be on be on s is is to of to it is on I a a of of a or to a In be at of a 1, 2), a is at . is to be in s is to B to s . is in To to In D, it is to on A is to 2 is by +X, )X, +Y, )Y, +Z,Z, a In a be of is 4). is as a As or to a AD be to a s be of (a) (b) an c) to s n购买后包含有 纸和说明书 ,咨询 目 录 引 言 2 毕业设计指导书 2 设计说明书 5 一、设计题目 5 二 、塑件 分析 7 三 、 所选材料的成型特性与工艺参数 8 四 、 浇注系统的设计 10 五 、 分型面的选择及型腔布置 13 六 、 排气系统的设计 13 七 、 成型零部件的设计与计算 14 八 、 脱模机构的设计 22 九 、 合模导向机构的设计 24 十 、 温度调节系统的设计与计算 25 十一、 设计 小结 27 十二 、模架的选择 29 十 三 、 参考文献 29 购买后包含有 纸和说明书 ,咨询 引 言 本说明书为机械类塑料模 注射模 具设计说明书,是根据塑料模具设计手册上的设计过程及相关工艺编写的。本说明书的内容包括:毕业设计任务书,毕业设计指导书,毕业设计说明书,毕业设计体会,参考文献等。 编写本说明书时,力求符合设计步骤,详细说明了塑料注射模具设计方法,以及各种参数的具体计算方法,如塑件的成型工艺,塑料脱模机构的设计。 本 说明书在编写过程中,得到有 张蓉老师 关同学的大力支持和热情帮助,在此谨以致意。 由于 本人设计水平有限,在设计过程中难免有错误之处,敬请各位老师 批评指正。 购买后包含有 纸和说明书 ,咨询 毕 业 设 计 指 导 书 一、题目: 套 件 材料 聚酰胺( 二、明确设计任务,收集有关资料 1、了解毕业设计的任务、内容、要求和步骤,制定设计工作进度计划(一般需 周) 2、将 零件图 ,转化为 面图,并标好尺寸 3、查阅、收集有关的设计参考资料 4、了解所设计零件的 用途、结构、性能,在整个产品中装配关系、技术要求、生产批量 5、塑胶厂车间的设备资料 6、模具制造技能和设备条件及可采用的模具标准情况 三、工艺性分析 分析塑胶件的工艺性包括技术和经济两方面,在技术方面,根据产品图纸,主要分析塑胶件的形状特点、尺寸大小、尺寸标注方法、精度要求、表面质量和材料性能等因素,是否符合模塑工艺要求;在经济方面,主要根据塑胶件的生产批量分析产品成本,阐明采用注射生产可取得的经济效益。 、塑胶件的形状和尺寸: 塑胶件的形状和尺寸不同,对模塑工艺要求也不同。 、塑胶件的尺寸精度和 外观要求 塑胶件的尺寸精度和外观要求与模塑工艺方法、模具结构型式及制造精度等有关。 3、生产批量 生产批量的大小,直接影响模具的结构型式,一般大批量生产时,可选用一模多腔来提高生产率;小批量生产时,可采用单型腔模具等进行生产来降低模具的制造费用。 4、其它方面 在对塑胶件进行工艺分析时,除了考虑上述因素外,还应分析塑胶件的厚度、塑料成型性能及模塑生产常见的制品缺陷问题对模塑工艺性的影响。 购买后包含有 纸和说明书 ,咨询 四、确定成型方案及模具型式: 根据对塑胶零件的形状、尺寸、精度及表面质量要求的分析结果,确定所需的模塑成型方案:制品的后 加工、分型面的选择、型腔的数目和排列、成型零件的结构、浇注系统等。 五、工艺计算和设计 1、 注射量计算:涉及到选择注射机的规格型号,一般应先进行计算。对于形状复杂不规则的制品,可以利用 的“分析 /模型分析 /模型质量属性”来计算质量。或者采用估算法估计塑料的用量,以保证足够的塑料用量为原则。 2、 浇注系统设计计算:这是设计注射模的第一步,只有完成浇注系统的设计后才能估算型腔压力、注射时间、校核锁模力,从而进一步校核所选择的注射机是否符合要求。浇注系统设计计算包括浇道布置、主流道和分流道断面尺寸计算 、浇注系统压力降计算和型腔压力校核。 3、 成型零件工作尺寸计算:主要有凹模和型芯径向(长 /宽)尺寸和高度(深度)尺寸,其最大值直接关系到模具尺寸大小,而工作尺寸的精度则直接影响到制品精度。为计算方便,凡孔类尺寸均以其最小尺寸作为公称尺寸,即公差为正;凡轴类尺寸均以其最大尺寸作为公称尺寸,即公差为负;进行工作尺寸计算时应考虑塑料的收缩率和模具寿命(磨损裕量)等因素。 4、 模具冷却与加热系统计算:冷却系统计算包括冷却时间和冷却参数计算。冷却时间计算有三种方法,根据塑料制品形状和塑料性能选择适当的公式进行计算即可。冷却参数包括冷却面积、冷却水空长度和孔数的计算及冷却水流动状态的校核和冷却水入口与出口处温度差的校核。模具加热工艺计算主要是加热功率计算。 5、 注射压力、锁模力和安装尺寸校核:模具初步设计完成后,还需校核所选择的注射机注射压力和锁模力能否满足塑料成型要求,校核模具外形尺寸可否方便安装,行程是否满足模塑成型及取件要求。 六、进行模具结构设计 1、 确定凹模(模板)尺寸:先计算凹模(模板)厚度,再根据厚度确定凹模(模板)周界尺寸 (长 X 宽 ),在确定凹模(模板)周界尺寸时要注意 :第一 ,浇注系统的布置 ,特别是 对于一模多腔的塑料模应仔细考虑模腔位置和浇道布置 ;第二 ,要考虑购买后包含有 纸和说明书 ,咨询 凹模上螺孔的布置位置 ;第三 ,主流道中心与模板的几何中心应重合 ;第四 , 凹模(模板)外形尺寸尽量按国家标准选取。 、选择模架并确定其他模具零件的主要参数:在确定模架结构形式和定模、动模板的尺寸后,可根据定模、动模板的尺寸,从塑料模国家标准 12555 1990 (塑料注射模大型模架)和 12556 1990 (塑料注射模中小型模架及技术条件)中确定模架规格。待模架规格确定后即可确定主要塑模零件的规格参数。再查阅标准中有关零部件 图表,就可以画装配图了。 七、画装配图 一般先画主视图,再画侧视图和其他视图。由于注射机大多为卧式的,故注射模也常按安装位置画成卧式,画主视图最好从凸凹模结合面(即分型面)开始,向左右两个方向画较为方便,且不易出错。 模具装配图包括: 1、主视图:绘制模具工作位置的剖面图 2、侧视图:一般情况下绘制定模部分视图, 3、俯视图、局部剖视图等。 4、列出零件明细表,注明材质和数量,凡标准件须注明规格。 5、技术要求及说明,包括所选注射机设备型号,所选用的标准模架型号,模具闭合高度,模具间隙及其它要求。 八 、绘制各非标准零件图 零件图上应注明全部尺寸、公差与配合、形位公差、表面粗糙度、所用材料、热处理方法及其它要求。 九、编写技术文件 1、编写注射成型工艺卡片:根据塑料的成型特点,查阅有关资料,确定合理的注射成型工艺参数,并作成工艺卡片。 2、编写加工工艺过程卡片:选取两个重要模具成型零件,确定加工工艺路线,并作成加工工艺过程卡片 3、编写设计说明书: 购买后包含有 纸和说明书 ,咨询 第一部分 设计题目: 镶件 注射模 一 设计题目: 套 件 注射模 二 设计要求: 1绘制产品 零件图 2绘制模具装配图 3绘制整套模具零件图(除标准件外) 4编写设计说明书 三 设计要求: 1模具结构设计合理,工艺性好。设计计算正确,参数选用正合理。 2模具绘图布局合理,视图完整 、 清晰 ,各项要求符合规范。 3 模具装配图采用 制并打印( 0 号图打印) 4 绘制全套模具零件图,除标准件(模架选择标准的也要出图) 5 设计说明书内容完整,分析透彻,语言流畅,参考资料应注明出处,字数在 购买后包含有 纸和说明书 ,咨询 20000 左右,统一采用 纸 、 5 号宋体打印。图量一般要求为2 张半 0 号。 第二部分 塑件分析 1. 制品图如图 2 图 2制品结构简单,形状尺寸小,壁厚均匀,使购买后包含有 纸和说明书 ,咨询 用 造。公差等级为 制品采用了凸起来增加制品的强度和刚度,表面粗糙度为 用液态石蜡作为尼龙类塑料脱模剂效果较好,硅油的效果好,但价格贵,而且使用时要与甲苯等有机溶剂配成共溶液,涂抹型腔后待有机溶剂挥发后才能显示硅油的润滑效果。该制品在成型后应进行调湿处理 ,因为这类塑料在空气中使用或存 放过程中容易吸水而膨胀,需要很长时间尺寸才能稳定下来。所以将脱模后的塑件放在热水中处理,不仅隔绝空气防止氧化,消除内应力,而且还可以加速达到吸湿平衡,稳定其尺寸。经调湿处理后的塑料,其调湿处理后的塑件,其冲击韧性和抗拉强度均有所提高。调湿处理的温度一般为 100 150 度。处理时间由塑料品种,塑件形状,壁厚和结晶度的大小来决定的。达到 调湿处理后,应缓慢冷却至室温。 第三部分 所选材料的成型特性与工艺参数 该制品采用 称尼龙,于 1939 年实现工业化生产,最初用作制造合成纤维的原料,后来由于 有高 韧性,耐磨性,自润滑,使用温度范围宽(高温度强度好,低温度韧度好),耐油和耐腐蚀等优良综合性能,已成为开发最早的工程塑料品种,并获得广泛的应用,其产量约占工程塑料总产量的三分之一。 性能特点: 熔点在 180 280 之间,品种不同,差别较大。然儿其热变形温度较低,购买后包含有 纸和说明书 ,咨询 一般均在 100 以下,长期使用就会发生脆化,必须提高热稳定性。 有良好的力学性能。它的 劳性 和耐油 耐溶剂性, 抗拉强度 硬度 耐磨性好, 有吸水性,优良的耐摩擦性和耐磨耗性,以及良好的耐疲 还具有较好的电绝缘性。 成 型特点以及模具设计的注意事项: 1 成型特点: 点高,成型前须预热;黏度低,流动性好,易产生溢流,飞边;熔融温度下较硬,易损模具主流道及型腔壁易黏膜。 2 注意事项:防止溢料,更提高结晶化温度,应注意模具温度的控制;收缩率为 30%玻纤增强尼龙 66 的工艺参数如下; 注射机类型;螺杆 预热和干燥 温度 100110 时间 1216H 成型温度 22730 模具温度 70 注射力 70176处理方法; 油 水 盐水 温度; 90100 时间; 明; 1) 预热和干燥均采用鼓风烘箱 2 ) 凡潮湿环境使用的塑料,应进行调湿处理,在 100120 度水中加热 218H 4注塑机的选择: 1) 注塑机的流量: 塑件的体积计算: 1v=6 92) 14=2v=6 4( 2 2 4 14=672 3 1v + 2v =72=v 注 66 取 25000 32)塑件的质量计算: 购买后包含有 纸和说明书 ,咨询 0 m 塑 v= = 66 凝料的质量为 5 克 = 取 30g 按注射量选择 40000 3注射机。 按流量选择注塑机,由 料制品及成型技术教材242 选择 40/32 立式注射机,其参数如下: 理论注射容积: 40 3 螺杆直径: 24射压: 150 锁模力: 320杆内向距: 205 移模行程 160大模具厚度: 160 最小模具厚度: 130嘴球半径: 10 喷嘴口半径: 3 四 部分 浇注系统的设计 A 浇注系统的组成及设计原则 1 浇注系统通常由主流道 分流道 浇口 料穴等组成 2 设计原则; 1流程要短。减少压力和热量损失及塑料消耗量,同时缩短了充模时间 2排气良好。使料流平稳顺利充满型腔。 3防止型芯变形和嵌件位移。应避免料流直冲较小的型芯和嵌件。 4防止塑件翘曲变形和表面形成冷疤,冷斑等缺陷。应减轻浇口附近应力集中。 5合理选择冷料穴 b 主流道设计; 主购买后包含有 纸和说明书 ,咨询 1 流道是指连接注射机喷嘴与风流道或型腔单腔模的进料通道。负责将塑料溶体从喷嘴引入模具,其形状,大小直接影响塑料的流速及填充时间。 主流道垂直于分型面通常作在淬硬浇口套内,如图 4示。为了使塑料疑料能从主流道中顺利拔出,需将主流道设计成圆锥形,具有 a=2锥角。内壁为 0.8 下的表面粗糙度,小端直径大于喷嘴直径约 坑半径 R 也应比喷嘴头半径大 1便疑料顺利拔出。浇口套大端高出定模端面 H=510定位作用与注射机定模板的定位孔呈间隙配合。为了拆御更换方便,模具的定位圈常与浇口套分开设计,如图 4示。 定位圈浇口套定模板购买后包含有 纸和说明书 ,咨询 2 图 4 1 C分流道及其平衡布置 ( 1分流道:主流道和浇口之间的进料通道。其作用是通过流道截面及方向变化使塥料 平稳地转换流向,并均匀分配给各个型腔多型腔模。常见分流道的截面形状有圆形 梯形 U 形 半圆形及矩形等几种形式, 其中圆形截面分流道的比面积最小,但需要开设在分型面两侧,且对应两部分必须吻合,加工不方便;梯形及 U 形截面分流道加工较容易,且热量损失和流动阻力均不大,为最常用形式;半圆形和矩形截面的分流道则因此比面积最大。在此设计中,采用圆形截面。 2分流道的尺寸;因为各种塑料的流动性有差异, 所以 a 以根据塑料的品种来粗略地估计分流道的直径。常用塑料的分流道直径推荐值如塑料制品成型及模具设计表 4于壁厚小于 3量在 200 以下的塑件可以用以下经验公式确定分流道的直径; D=m 4l 式中; 于粘度叫大的塑件,可用上式算得的 以 系数,据表 4 3 查得尼龙类分流道的直径为 取D=4。 3分流道的布置:分流道采用平衡布置,多型腔模具应尽量均衡布置型腔,使熔融塑料几乎同时到达每个型腔的进料口,这样,塑料 到每个型腔的压力和温度是相同的,塑件的品质理应相同 购买后包含有 纸和说明书 ,咨询 3 图 4 2 D 浇口的设计 1浇口又称进料口,是分流道与型腔之间的狭窄部分,也是浇注系统中最短小的部分,他使塑料溶体的流速产生加速度,有利于迅速充满型腔,同时 还起封闭型腔防止溶体倒流的作用,并在成型后使浇口凝料与塑件易于分离。浇口的设计与塑料性能,塑件形状,截面尺寸 模具结构及注射工艺参数等有关。总的要求是使溶料以较快的速度进入并充满型腔,同时在充满后 能适时冷却封闭,因此浇口的截面要小,长度要短,这样可以增大料流速度,快速冷却封闭,且便于塑件与凝料分离,不留明显的浇口痕迹,保证塑件外观质量。 2浇口的形式 ;浇口的形式很多,在此设计中为了保证制件的外观,采用推切式潜伏 口。 3前途浇口的优缺点;进料口设在塑件内侧时,塑件外边面没有点浇口切断购买后包含有 纸和说明书 ,咨询 4 痕迹。脱模时,推杆 切断进料口可实行注射机的全自动化操作。避免了点浇口流道所需要的定模定距分型机构。模具结构简单。但隧道斜孔的加工较困难。为了将斜的点浇口推出。必须是柔韧性好的塑料,必须是柔韧性好的塑料。并且要严格掌握塑件在模内的冷却时间。在流道为凝固时及时推出潜伏浇口 E 冷料穴设计; 冷料穴的作用是储存因两次注射间隔而产生的冷料头以及 塥体流动的前锋冷料,以防止溶体冷料进入型腔。冷料穴一般设在主流道的末端,冷料穴底部常作成曲折的钩行或下陷的凹槽,使冷料穴兼有分模时将主流道衬套中拉出,并留在动模一侧的作用。在此设计中采用带球 型头拉料杆的冷料穴。这种拉料杆专用于借助推板将制品脱模时模具中。前锋冷料进入冷料穴后,紧包在拉料杆的球形头上,开模时便可将主流道凝料从主流道中拉出。球头拉料杆固定在动模一侧的型芯固定板上,并不随推出机构移动,所以当推件板从型芯上推出制品时,也就将主流道凝料从球头拉杆上硬刮下来 图 4 3 购买后包含有 纸和说明书 ,咨询 5 第五部分 分型面选择及型腔布置 A 分型面的选择原则; ( 1便于塑件脱模: 1)在开模时尽量使塑件留在动模内; 2)应有利于侧面分型和 抽芯; 3)应合理安排塑件在型腔中的方位。 2考虑和保证塑件的外观不遭损失: ( 3) 尽力保证塑件尺寸的精度要求 ( 4) 有利于排气。 ( 5) 尽量使模具加工方便 B 分型面的形式如图 5 1 型腔树木的确定与排列形式 购买后包含有 纸和说明书 ,咨询 6 图 5 1 ( 1)根据经济性确定型腔树木 ( 2)根据注射机的额定锁模力确定型腔树木 ( 3) 根据注射机的最大注射量确定型腔 数目 ( 4)根据制品精度确定 型腔数目 对于高精度制品,由于多型腔模具难以使各型腔的成型条件均匀一致。故通常推荐型腔数目不超过 6 个,本设计为 六 型腔注射模 。 2 型腔的排列 此设计的型腔在模板上呈圆形排布。在设计时要注意以下几点 ( 1) 尽可能采用平衡式排列(参见分流道布置)确保制品的质量的均一和稳定 ( 2) 型腔布置与浇口开设部位应力求对称,以便防止模具承受偏载而产生溢料现象 如 图 4量使型腔排的紧凑,以便减少模具的外形尺寸。 第六部分 排气系统的设计及流动比的校核 在注射成型过程中模具内除了型腔和浇 注系统中原有的空气外,还有塑料受热和凝固产生的低分子挥发气体,这些气体若不能顺利排出,则可能因充填时气体被压缩而产生高温,引起塑件局部炭化烧焦,或使塑件产生气泡 ,或使塑件熔接不两而引起缺陷。 购买后包含有 纸和说明书 ,咨询 7 注射模的排气方式,大多数情况下是利用模具分型面或配合间隙自然排气。只在特殊情况下采用开设排气槽的排气方式。此模具排气系统设计成第一种。采用间隙配合排气。 第 七 部分 成型零部件的设计与计算 一 型腔,型芯的结构设计 ( 1)型腔的结构设计 凹模分为整体式和组合式凹模 。整体式凹模它是由一整块金属材料(也称定模板或凹模板) 直接加工而成。其特点是为非穿通式模体,强度好,不易变形。但由于加工困难,故只使用于小型且形状简单的塑件成型。组合式凹模又可分为整体嵌入式,局部镶嵌式以及拼块组合式。本设计采用整体式凹模,型腔对称 均布在定模板上,如图 7 1 图 7 1 ( 2)凸模的结构设计 购买后包含有 纸和说明书 ,咨询 8 凸模(即型芯)是成型 塑件内表面成型零件,通常可分为整体式和组合式两种类型。 整体式凸模是将成型的凸模与动模板做成一体,不仅结构牢固还可省去动模垫板(既支承板)。但是由于不便于加工,故 只适用于形状简单且凸模高度较小的单型腔模具。组合式凸模又分整体装配式和镶件组合式。 整体装配式 凸模:它是将凸模单独加工后与动模板进行装配而成。 镶件组合式凸模:对于形状复杂的凸模,为了加工方便,可采用镶件拼合式结构。 综上所述,本模具凸模采用整体装配式凸模 凸模的固定采用带脱 模 板式。结构如图 4 7 2 购买后包含有 纸和说明书 ,咨询 9 二 成型零部件工件尺寸计算 ( 1)影响工件尺寸的因素: 塑件的公差:塑件的公差规定按单向极限制,制品外轮廓尺寸公差取制品内腔尺寸公差取正值 若制品上原有公差标注方法与上不符,则应按以上规定进行转换。而制品孔中心距 尺寸公差按对称分布原则计算。既取 ( 2)模具制造公差:时间证明,模具制造公差可取塑件公差的 ( 3)模具的磨损量:实践证明,对于一般的中小型塑件,最大磨损量可取塑件公差的 1/6 ( 4)塑件的收缩率:塑件成型后的收缩率与多种因 素有关,通常取平均收缩率: ( 5)模具分型面上的合模间隙:由于注射压力及模具分型面平面度的影响,会导致动模,定模注射时存在着一定的间隙。一般当模具分型面的平面度较高时,表面粗糙度较低时,塑件产生的飞边也小, ( 2)成型零件工作尺寸的计算: 购买后包含有 纸和说明书 ,咨询 0 1凹模径向尺寸的计算 +s) 43 Z0= 19( 1+ 34 = H( 1+S) 43 0 z= 14( 1+ 23 = ( 2) 型心尺寸: 1+s) + 43 0 z= 18( 1+ 34 =零件的加工工艺: 1定模型芯 购买后包含有 纸和说明书 ,咨询 1 定模型芯是主要的工作零件,这套模具的生产批量为大批量,且塑件成型时有一定的腐蚀性,因此选用的材料要具有良好的耐磨性,由于客户已明确提出成型零件的材料要选用瑞典一百腾公司的 718S 钢材(注:此种钢材的性能特好,是做塑料的专用材料,具有良好的耐磨性,耐腐蚀性,它的价格为一百多元人民币一斤),因此我们选用 718S 的材料。 同时考虑到此塑料对尺寸精度要求一般,但对表面要求较高,根据本工厂的实际设备情况,在对材料进行粗加工后,留 单边,淬火,低温回火后,用电火花机放电到位,最后还需要对成型表面进行抛光,省模(省模:制造模具的一道很重要的工序,一般配备了专业的省模女 工,即用打磨机,沙纸、油石等打磨工具将模具型腔表面磨光,磨亮,降低型腔表面粗糙度)。 其浇道衬套孔要与衬套配合,在粗加工后,留单边 余量,热处理后采用慢走丝割出即可。 综上所述,定模型芯加工工艺如下: 718S 1) 开料:开出长 x 宽 x 高为 241 96 31毛坯。 2) 磨基准:按照零件图基准方位在平面磨床上磨出基准面,同时磨平各平面,边余量。 3) 按照图样,在铣床上钻螺纹孔,运水孔。 4) 在数控铣床上采用 件,采用直径为 8 的铣刀,铣出两条浇道,采用直径为 6 的铣刀铣出分流道,同时,按照图样要求铣出四个型腔的形状,单边留 余量。 5) 送热处理车间进行热处理:淬火(油淬 +低温回火),使其表面硬度达到56 60 6) 按照图样要求加工型芯各表面,保证型芯的平行度,垂直度,要求型芯磨后六面见光。 7) 电火花放电: a)工件准备:模块材料为 718S 钢,铣、磨按图纸要求加工成型,热处理 56 60,六面见光,保证平行度及垂直度,同时加工两块模板,保证尺寸的一致电性。 购买后包含有 纸和说明书 ,咨询 2 b)电极制作:电极材料为紫铜,最好选用铜钨合金,根据型腔的形状,为了便于铜公的加工,将铜公分体做成三个依次放电到位(注:两边侧抽芯的型腔各一个,中间型腔做一个铜公,同时考虑到铜公的装夹,将其铣成两边各一半的外形,中间为方形,便于装夹,每挡加工制作一个铜公,可连续放电四个型腔,利用铜公的别一边用来放电动模型腔 . c)校正、装夹、安装合格。 d)使用设备:使用北京易通电加工技术研究所制造的 火花成形机床。 脉宽 /歇 /边间隙 /糙度 /00 100 0 50 0 50 .6 e)加工规准:如上表所示(注:以上规准只供参考,具体规准应根据机床的性能,及其加工工人的经验来确定,确保最后一档放电加工到位)。 8)用慢走丝割出直径为 32浇口衬套孔,镶件孔。 9)对成型面进行研磨达到图样表面粗糙度的技术要求。 10)最后用激光在型芯上刻出产品上的文字。 同定模型芯一样。 3行位 a)材料: 45# b)加工工艺: 1)开料:在 45#钢板上割出一块长 x 宽 x 高为 100 177 51毛坯。 2)在平面磨床上磨基准。 3)在铣床上有角度分度头调好角度,粗铣左侧的斜面。 4)在铣床上铣出如图所示右侧的形状及其导滑部分。 5)在铣床上铣出用分度头调好角度,用镗刀镗出的直径为 17斜孔。 6)钻螺钉固定孔。 7)热处理:淬火 +低温回火,淬硬表面硬度为 54 58 8)磨削基准平面及其斜面,使各部分的尺寸加工到位。 购买后包含有 纸和说明书 ,咨询 3 9)用电火花机放电打出滑块两个 定位孔。 10)在滑块斜面磨出 45 度,宽大 10 储油槽,其它的零件在此就不一一叙述。 模具加工工艺流程 : 1、 根据零 件结构和制造工艺 ,模架的基本组成零件有两种 :导柱、导套等回转零件;模板等平板零件。 导柱、导套的加工主要是内、外圆柱面加工,平板内零件的制造过程主要进行平面加工和孔隙加工,他们在模具中起定位的导向作用,保证凹凸模在工作时具有正确的相对置,除了要保证导柱,导套配合表面尺寸形状精度外,还应该保证导柱、导套各自配合面之间的同轴度要求。 导柱、导套一般采用低碳钢进行渗碳、淬火处理,也可选用碳素工具钢 火处理硬度 58 根据分析,导柱、导套加工艺过程如下: 备料 粗车、半精车 内外圆柱表面 热处理 研磨导柱中心孔 粗磨、精磨配合表面 研磨导柱、导套重要配合表面。 1、 凸模加工工艺过程如下: 下料 锻造 退火 粗加工 精磨基面准面 划线 工作型面半精加工 淬火、回火 磨削 修研。 2、 凹模加工工艺过程如下: 下料 锻造 退火 粗加工六面 精磨基面准面 划线 型孔半精加工 型孔精加工 淬火、回火 精磨(研磨) 3、 模架的装配: 导柱、导套与模板之间一般采用过盈配合,装配时可采用手动压力机将导柱压入动模板的导柱孔,复位机构的装配复位杆与固定板一般采用过度配 合。模架的装配比较的简单,主要是用螺钉将装有导套的定模板连接起来。 4、 模具表面强化处理工艺特点及应用: 渗氮处理:渗氮处理是向模具零件表面渗入氮原子的过程, 模具渗氮前应加工到尺寸精度和表面粗糙度,最好是经过试模确认完全合格后购买后包含有 纸和说明书 ,咨询 4 再进行渗氮处理。根据模具的技术要求分别采用以下两种工艺路线: 精密模具:备料 锻造 退火或回火 粗加工 调质 半精加工 装配 试模 渗氮 研磨抛光 装配; 一般模具:备料 粗加工 调质 精加工 糁氮 研磨 装配; 5、 总装的技术要求 a、装配后的模具安装表面的 平行误差不大于 b、模具闭合后分型面应均密合; c、导柱、导套滑动灵活,推件时推杆和卸料板动作一致; d、合模后动模部分和定模部分的型芯必须紧密接触 6、 试模: 模具在装配完成之后,在交付生产时试模,其目的是检查模具在设计制造上是否存在缺陷,若有,则要求排除;对模具成型工艺条件进行试验以有利于模具成型工艺的确定和提高。 ( 3) 强度校核: 在注射成型过程中,型腔主要承受塑料熔体的压力,因此模具型腔应具有足够的强度和刚度。 如果型腔的壁厚和底板的厚度不够,当型腔中产生的内应力超过型腔材料 本身的应力 时, 型腔将导致塑性变形,甚至开裂。与此同时,若刚度不足将导致过大的变形从而产生型腔向外膨胀或溢料间隙。因此。有必要对型腔进行强度和刚度的计算,尤其对重要的精度要求高的大型塑件的型腔,不能仅凭经验确定型腔壁厚和底板厚度。常用的刚度和强度计算公式见塑料制品成型及模具设计 用 火。 0 侧壁厚度: S 43) 购买后包含有 纸和说明书 ,咨询 5 由塑料制品成型及模具设计教材 86p 查得。 = = E=510 P=25 40 取P=30 325b M 195s M S 取 S=10 r 12 2 P ( )=2 取 S=10 符合要求 底板厚度,即推板厚度: 40 ( )= 取0mm 22) = 取0合要求 第 八 部分 脱模机构的设计 ( 1) 设计脱模机构时,应遵循以下原则: 1 结构可靠:机械的运动准确,可靠。灵活,并有足够的刚度和强度。 2 保证塑件不变形,不损坏 3 保证塑件外观良好 4 尽量使塑件留动模以便以便借助与开模力驱动脱模装置,完成脱模动作 ( 2) 脱模力的计算: A+中 P 塑件对型芯产生的正压力,一般 P=8 12件取小值,厚件取大值,取 P=10脱 =10 7 14+7 14=买后包含有 纸和说明书 ,咨询 6 总F=6 3)脱模板的厚度计算: 按刚度计算则为: H ( 21k F 13) 式中 H 脱模板厚度( 脱模板 ( N) R 推杆轴线到脱模板中心的距离( 1与 R/r 相关的系数,由教材 4 18 查得: 17/15= 按 取 1k =2k = 取 H=10按强度计算: H ( 0 . 2 2 7 7 1 3 5 . 6 5 4325= H=10合要求 第 九 部分 合模导向机构的设计 为了保证注射模准确合模和开模,在注射中必须设置导向机构。导向机构的作用是导向。定位。以及承受一定的侧向压力。本设计中采用导柱导向机构。 导柱 导套结构适用与精度要求高,生产批量大的模具。对于小批量模具可不采用导套,直接与模体间隙配合。同时在设计导柱导套时还应注意以下几点: 1 导柱应合理地均布 在模具分型面的四周,导柱中心至模具外缘应有足够的购买后包含有 纸和说明书 ,咨询 7 距离,以保证模具的强度 2 导柱的长度应比型芯凸模端面的高度高出 6 8免型芯进入凹模时与凹模想碰 而损坏。 3 导柱和导套应有足够的耐磨度和强度采用 20 低碳刚经渗碳 火 48 55可采用 素工具刚,经淬火处理。 4 为了使导柱能顺利地进入导套,导柱端应做成锥形或半球形,导套的前端也应倒角。 5 导柱设在动模一侧可以保护型芯不受损伤,而设在定模一侧便于顺利脱模取出塑件,因此可根据需要而决定装配方式。 6 一般导柱滑动部分的配合形式按 8,导柱和导套部分配合按 6,导套外径的配合按 6 7 除了动模,定模之间设导柱,导套外一 般还在动模座板与
- 温馨提示:
1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
2: 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
3.本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

人人文库网所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。