可持续水资源管理p65-p85_第1页
可持续水资源管理p65-p85_第2页
可持续水资源管理p65-p85_第3页
可持续水资源管理p65-p85_第4页
可持续水资源管理p65-p85_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

可持续水资源管理理论 方法 应用(P65P85) 22 水质模型 建立反映水环境污染客观规律的数学模型是对是对水环境进行预测评价、规划和科学 管理的基础,也是建立社会资源管理的基础,也是建立可持续水资源管理量化模型的基础 模型之一,本文首先简介水环境的模型化过程,然后重点描述各类水体的水质模型。 221 水环境模型化过程 所谓水环境的模型化,就是把与水环境有关的变量之间的关系及其影响规律抽象成一 系列反映水环境性能和机理的数学方程式形式,并利用数学手段对其进行求解,已解决实 际的水环境问题。它的建立是在对水环境进行反复地考察研究,通过实验或实地监测取得 大里的有关信息和数据,进而对所研究的系统行为和变化规律有了深刻认识的基础上,经 过简化和数学演绎而得出的一系列数学表达式.因此,建立水环境的数学棋型一直是从事水 资源和水环境研究的一项重要基础工作。 水环境的数学模型,主要是指各类水体的水质模型、水质评价模型和水环境规划模型 等。一般而言,建立的水环境模型应具有如下特性。 现实性即所建一立的模型在一定程度上要能够反映和符合系统客观实体的情况和规 律,应把系统本质的东西和系统内外部不阅组分之间的主要关系反映出来,把非本质或次 要的东西省略,而又不影响对现实模拟的真实程度。 准确性 由于任何一个水环境系统都是作常复杂的,其自然规律目前人类还没有完 全掌握,因此在实际建模过程中不得不忽一些难以用数学公式表达的关系,但这种忽略要 建立在满足解决问题所必需的精度要求之上。在确认模型参数的过程中,也要致力于保证 参数的真实性和可靠性,从而保证模型的准确性。 简单性 在保证模型的现实性和准确性的基础上,要尽可能地使所建立的模型简单化, 以节省建模和运用的费用和时间,并增强其可应用性。如果一个简单的模型能使实际问题 得以满意的解决,那它就优先于一个复杂的模型。 在水环境评价和规划中!模型化也起着十分重要的作用。其原因在于,在没有或难以建 立实体系统以供观测和试验的条件下,为了求得系统的参数和确定各种制约条件下系统的 变化趋势,模型方法确实是一种有效的科学手段。目前!水环境评价和规划工作,几乎都是 借助模型来完成的。一般做法是利用建立的模型!给出不同的输入参数和基础数据,观察系 统的输出,然后根据最后的结果评价环境影响,并选择最佳的系统设计方案。 2.2.1.2 水环境模型的分类 水环境的数学模型可从不同的方面进行分类。 按照水环境模型研究对象的水体特征,可以分为河流河口水质模型、湖泊水库水质模 型、海洋水质模型和地下水水质模型等。河流模型的开发已经比较成熟,能够较好地反映 实际情况。湖、海模型都比较复杂,可靠性较差。 按照水环境模型中的水质组分,可以分为单组分、耦合组分、多组分和水生生态模型 等,其 BOD-DO 耦合模型是应用最多的一种水质模型。 按照水环境数学模型与时间的关系,可以分为稳态模型和非稳态模型两类。稳态是指 污染物的浓度不随时间变化,然而天然河流实际上并不存在这种理想状态,但我们可以把 河流某一段时间内相对稳定的流量和排污情况作为稳态来处理。动态是指污染物的浓度随 时间变化而变化,它可用来估算暴雨径流和污染事故泄漏等瞬时变化的情况。 按照模型的空间维数,可以分为零维模型、一维模型、二维模型和多维模型。在实际 应用中! 选用几维模型应根据研究区域的空间范围及其水体中污染物的混合情况而定。例如, 如果仅是对区域性水质进行粗略的模拟计算!采用零维模型即可;如果对一个较长的河段或 河流进行水质模拟计算,可以采用一维模型;如果要研究河流局部河段范围内的水质状况, 排污口或入海口附近的污染物分布以及污染带等类似间题时,就要考虑采用二维模型或三 维模型。 按照所建模型的物质的反应特性,水环境模型可以分为保守性物质模型和非保守性物 质模型。前者指像重金属、农药等类的物质,其在水环境中不(或不易) 发生生物氧化分解; 后者指可(易)降解的一类有机污染物。 2.2.1.2 水环境系统建模过程 建立水环境模型的过程一般可分为如下几个步骤。 分析模型的使用目的和要求,确定模型的功能。在建立模型之前,首先必须明 确以下几个问题:为什么样的对象建立模型?需要建立什么样的模型?如何保证使建立的模 型符合使用要求? 进行科学的系统分析,并根据目的和要求从时间和空间等角度确定研究系统的 边界条件,确认系统的输入、输出和状态等变量及其性质。 在对系统的变化机制有了初步分析、推断的基础上,对系统进行调研、监测,取 得建模所必需的数据和资料。 识别模型的结构,在理解系统各要素之间的作用关系的前提下,建立起相应的函 数关系。 根据监测得到的数据,使用适当的数学技术估算出模型中的各个参数值。 将几组在参数估值时未使用过的数据代入模型,并计算模型的精度,了解是否符合 模型的精度要求和使用要求。若符合要求!则建模过程结束。若不符合要求,则重新确定模 型的结构,重复以上过程。 2.2.2 河流水质模型 地表水的水质模型可以分为河流水质模型/湖泊和水库水质模型/ 海洋水质模型/非点源 水质模型等,其中每种类型的模型又都可按照不同的特点分为各种子类别,例如河流水质模型 又可分为零维、一维、二维、多维和 BOD-DO 耦合模型等。下面就逐一进行介绍。 针对水体中不同的混合特点,可以从空间维数来区分以下几种基本方程。 图 2-12 连续完全混合反应器 2.2.2.1 零维水质模型 当把一个水体(如一个河段)看作是一个完全混合反应器(见图 2-12)并假设水流进 入该系统后即完全分散到整个系统,其中各水团是完全混合均匀的。对这种连续流完全混 合反应器的理想情况,可列出以下的质量平衡关系: 积累率=进入量-输出量+ 衰减量 即 式中,V 为反应器内水的体积 ,L3;C 0,C 分别为入流与反应器内污染物的浓度,ML -3;S 为反应器内其他来源和漏失的污染物量总和,MT -1;r (C)为反应器内过程的反应速率, ML-3T-1; Q 为流经反应器的流量。 如果系统内 S=0,则上式可变为 如果研究的污染物在反应器内的反应符合一级动力学反应,则 r(C)=-K 1C,式(2- 57)可进一步改写为 式中,K 1 为一级反应速率常数, T-1。 式(2-59)就是常用的零维水质模型基本方程 .当假设河段中没有源和漏失量 (S=0) ,污染物反应属于一级动力学反应,且河流处于稳定条件下,即 dC/dt=0,式(2- 59)转化为: 对于任一具有以上条件的河段,可以将其分割为 i 个子河段(见图 2-13).对于其 中第 i 个河段,又可以分为 m 个单元(1,2,m) 。对于每个单元,都可以看作是一个 完全混合反应器。因此,可以把这 m 个单元看作 m 个串联的完全混合反应器。并由此可 以得到以下各式: 图 2-13 河流零维模型概念 起始断面浓度为 式中,C 0 为第 i 河段起始断面浓度,ML -3;C j 为第 i 河段第 j 子段的污染物浓度, ML-3;U 为河段平均流速,LT -1;x 为单元长度,L ;Q i-1 为上游流入第 i 河段的流 量,ML -1;q x-1 为第 i 河段起始端旁侧入流流量,ML -1;C i-1 为上游来水的污染物浓度, ML-3;C x-1 为第 i 河段起始端旁侧入流污染物浓度, ML-3。 利用上式可以计算出各河段中每个微小单元的浓度 Cj。零维河流水质模型适用于均匀 河段,并且要求取的x 足够小,否则误差较大。 2.2.2.2 一维水质模型 (1)水量平衡方程 考察河流中长度为x 的微小河段的水量平衡关系(见图 2-14) 。图中:Q(x),Q(x+x)为 流入和流出量,L -3T-1;q、q b 分别为侧向输入和底部渗出流量,L -3T-1 L-1;p R、p E 分别 为单位水面的降水量与蒸发量,L -3T-1 L-2;A 为河床断面,L 2;B 为河面宽,L 。则 x 时间间隔内微小河段中的水质量平衡方程为: 式中m 为t 时间内微元河段中水质量的增量,M; 为水的密度,ML -3,1. 用t、 x 除方程两边: 图 2-14 微小河段的水量平衡关系 图 2-15 河流中的一个假想微元 当t0,x0 时: 通常可以把 pR、p E 和 qb 忽略,则产生了水平衡方程式: (2)水质平衡方程 首先假定水流运动是推流,即所有水片以同一速度 v 运动(见图 2-15).则污染物质量变化 可以写成: 式中 S1、S 1分别为单位时间、单位长度上侧向和底部的源和漏,ML -1T-1;S s 为单位 时间、单位面积上的源和漏,ML -2T-1;S v 为单位时间、单位体积内的源和漏,ML -3T-1 对式中的源取正值,漏取负值。 用x、 t 除方程两边,并使 x、 t 趋于 0,得 或 该式即为推流的水质平衡方程,其中 AS= S1+ S1+BSs+ASv (3)基本方程 当考虑分子扩散/湍流扩散和弥散过程时 ,推流流动水质平衡方程又可变化为以下 3 种形式。 增加分子扩散(点的瞬时值)用流场中水质点的瞬时值 C 和 u 来表达其浓度和流速, 则式(2-71 )变为: 增加湍流扩散(点的时平均)采用流场中点的平均值 、 表达,此时,C= +C,uC u= +u(C和 u 为因湍流扩散所引起的偏差量 ) 。把此转换关系和 Q=uA 代入式(2-72 ) ,u 经整理可得: 增加弥散(断面平均值)此时应采用河流断面的平均 、 来表达。其转换关系为Cu C= +C*,u= +u*(C*和 u*为弥散引起的偏差量)。代入式( 2-73)并经推导整理可得到Cu 如下的一维河流水质微分方程: 或写成 此时,必须注意式(2-75)中的水流流速和水中污染物的浓度都是指断面的平均值! 而 非任意点的瞬时值或平均值,该式即为一维河流水质微分方程。 实际应用中,可以忽略分子扩散作用,因此一维河流水质基本方程即为: 对于均匀河段!断面面积且为常数,此时一维河流水质基本方程为: 对于有弥散现象的河流,一般 x 方向的弥散系数 Dx 比扩散系数 Ex 大得多 (D x1010 3,E x10 -21 ) ,因此,往往可忽略扩散项,则式(2-77 )可改写成一维均 匀河流水质基本方程: 其中 如忽略河流底部渗流项 S1,并用平均水深 H 代替 A/B,则 对于河底无渗漏、忽略面源的侧向输入、污染物为一级衰减反应的一维均匀河流水质模型 的基本方程为: 式中,L 为 t 时存有的污染物浓度,ML -3;K 1 为反应速率常数,T -1。 (4)基本方程的解析解 一维均匀河流水质模型的基本方程的通式为: 按照河流水文和排污状况,先确定求解条件,求解条件分类如下: 稳态解 稳态是指均匀河段、定常排污的条件,即污染物输入量 W 、断面面积 A、流 速 u 和 Dx 恒定,均不随时间变化。因此,有 ,可得如下常微分方程:0/tC 给定边界条件:x=0,C=C 0;x,C=0. 可用解特征多项式的方法对方程求解,得到稳态 解: 忽略弥散当河流的弥散系数很小时,一般可以忽略,即 D=0,于是一维河流水质方程变 为: 该偏微分方程可化为由下式给出的两个常微分方程: 式中,x(t)为该方程的特征线。对上式积分得到: 由上式可看出!只要知道初始浓度 C=C0,即可求得水团流到下游某个地点的时间与浓度。 图 2-16 瞬时排污的情况 瞬时突然排污条件时的解首先构造一个 (t)函数(见图 2-16).设河段起始端 (t=0,x=0) ,突然瞬时排放质量为 W 、流量为 Q 的平面污染源。其排污状况可以用一个 以短时间t 为等比指标的 (t)函数来描述。当等量的平面污染源 W/DML-3T,用不同的 时间间隔(如T、T/2、T/4 、)释放,则排放的浓度可表达为 (t) W/D,其排放 总量为 (即图中 1,2 的矩形面积相等),并可知 。 J“ 如果我们在 t=t0、x=x 0 处进行瞬时排放,则此时排放的浓度应为 (t-t 0)W/D,且 。 这样,可以在如下边界条件下:C(x ,0)=0,C (0, t)=C 0(t),C(,t)=0 对一维均匀河流水质模型的基本方程的通式(2-81)进行求解,其中利用到拉普拉斯转 换和特征多项式法,可以得到如下解(即一维线性平面污染源瞬时突然排污的积分方程): 平流项 BOD 衰减项 扩散和弥散项 式中,C0=W/Q 为污染物质量。 如果排放的是惰性污染物(如示踪剂、 NaCl 等) ,其在河流中不衰减 (k1=0),则上式变 为: 对 t=0, x=0 处, 对 t=0,x=0 处, 上式中指数项表示污染物由 t0t 时,扩散成正态分布,其方差为 2D(t-t 0 ) 。 起始断面有连续排污源条件时的解 当边界条件为 x=x0,C 0(x0,t)时,方程(2- 81)的解析解为: 该式是一个具有 f 函数的卷积分。它可以设想为 C0(x0,t)的连续排污源,分解 为一系列瞬时源的 (t)函数输入,每个输入的时间间隔为t,由于基本方程的直线性,河 流对这一系列输入的反应等于各单个反应的总和。 式(2-90) 中, 从式(2-90)和式(2-91) 可以得到一个一维均匀河段上任意时刻和位置的浓度,但只 有在特殊条件下式(2-90)才有解析解。 8,说明复氧远大于耗氧 ;当 f

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论