已阅读5页,还剩16页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
白藜芦醇 减肥白藜芦醇(Resveratrol)是葡萄皮中的一种植物抗毒素,植保菌素(phytoalexin) 减少脂肪细胞中脂肪积聚,降低 glycerol-3-phosphate dehydrogenase 酶活性,降低脂肪生成的关键转录因子,如peroxisome proliferator-activated receptor, CCAAT/enhancer-binding proteins及其目标基因(FAS, aP2, SCD-1, and LPL)的表达。Treatment with extracts of resveratrol-amplifiedgrape skin decreased lipid accumulation and glycerol-3-phosphate dehydrogenase activity without affecting 3T3-L1 cell viability. Grape skin extracttreatment resulted in significantly attenuated expression of key adipogenic transcription factors, including peroxisome proliferator-activated receptor, CCAAT/enhancer-binding proteins, and their target genes (FAS, aP2, SCD-1, and LPL). These results indicate that resveratrol-amplified grape skinextracts may be useful for preventing obesity by regulating lipid metabolism.脂肪酸合成酶(FAS)的代谢与体内平衡是由上游刺激因子(Upstream Stimulatory Factor)和固醇调节元件结合蛋白(sterol regulatory element binding protein-1c,SREBP-1c)进行转录调控,以对进食行为和胰岛素做出反应。1516脂肪酸结合蛋白aP2:脂肪酸结合蛋白(,)是低分子质量胞浆蛋白超家族,脂肪细胞型脂肪酸结合蛋白(?,?)为该家族成员之一。?可逆性地结合饱和及不饱和长链脂肪酸,促进脂肪酸的代谢和转运,调控脂类生成及降解硬脂酰辅酶a去饱和酶-1(SCD-1):硬脂酰辅酶A去饱和酶(stearoyl-coenzyme A desaturase,SCD)是催化饱和脂酰辅酶A生成单不饱和脂酰辅酶A的关键酶,在不同的组织中有多种亚型分布。高热量饮食、运动、激素等因素均影响SCD的基因表达水平。对SCD蛋白表达水平和活性的调控会直接影响生物体内饱和脂肪酸(saturated fatty acid,SFA)与单不饱和脂肪酸(monounsaturated fatty acid,MUFA)的比例,从而进一步影响整个机体的脂质代谢,进而与细胞应激反应及胰岛素敏感性直接相关。因此,SCD逐渐成为代谢疾病治疗的一个潜在的靶分子。脂蛋白脂肪酶(lipoprteinlipase,LPL)是脂肪细胞、心肌细胞、骨骼肌细胞、乳腺细胞以及巨噬细胞等实质细胞合成和分泌的一种糖蛋白,分子量为60ku,含3-8碳水化合物。活性LPL以同源二聚体形式存在,通过静电引力与毛细血管内皮细胞表面的多聚糖结合,肝素可以促进此结合形式的LPL释放入血,并可提高其活性。LPL生理功能是催化CM和VLDL核心的TG分解为脂肪酸和单酸甘油酯,以供组织氧化供能和贮存。LPL还参与VLDL和HDL之间的载脂蛋白和磷脂的转换,ApoC为LPL必备的辅因子,其中的C端第61-79位氨基酸具有激活LPL的作用。 特性脂蛋白脂肪酶在哺乳类动物如牛、鼠和猪等LPL的酶蛋白质一级结构有87-94的同源性,事实表明,LPL在进化过程中具有高度保守性,人类LPL、肝脂酶(hepatictriglyceridelipase,HTGL)及胰脂酶具有高度相似的氨基酸序列,推测三者可能起源于同一个基因家族,有共同的作用机制。 组成LPL基因位于第8染色体短臂8p22,长约35kb,由10个外显子和9个内含子组成,编码475个氨基酸残基的蛋白质,LPL基因位点存在多态性,主要分布在LPL基因内含子和侧翼序列中,其中内含子6中PVU多态位点和内含子8中Hind多态位点与高脂血症有关,并为高脂血症的家系连锁分析提供了遗传标记。 LPL在实质细胞的粗面内质网合成,新合成的LPL留在核周围内质网,属于无活性酶,由mRNA翻译合成的无活性LPL,称为酶前体,再经糖基化后,才转化成活性LPL。从细胞中如何分泌,目前认为有两种机制,其一是细胞合成LPL后直接分泌,不贮存于细胞内,即称为基本型分泌;其二是调节型分泌,某些细胞新合成的LPL贮存在分泌管内,一旦细胞受到一个合适的促分泌刺激,LPL即分泌,此时分泌往往大于合成。所有细胞都具有基本型分泌,只有少部分细胞兼有两种分泌形式。存在于细胞膜外表面的硫酸肝素糖蛋白(heparinsulphateproteoglycans,HSPG)使酶保持一种无活力的浓缩状态,然后通过一个尚未阐明的机制由肝素促使分泌,即肝素后刺激血浆中得到活化的LPL,分布在含甘油三酯的脂蛋白中,主要是分解CM和VLDL的甘油三酯,并结合和附着在这些脂蛋白残粒中,可能作为肝摄取这些颗粒的信号。 功能LPL生理功能,目前认为是分解脂蛋白核成分的甘油三酯,也分解磷脂如卵磷脂、磷脂酰乙醇胺,并促使脂蛋白之间转移胆固醇、磷脂及载脂蛋白,其代谢产物游离脂肪酸为组织提供能量,或再酯化为TG,储存在脂肪组织中。另外,LPL还具有增加CM残粒结合到LPL受体上的能力,促进CM残粒摄取。 测定血浆LPL活性时,一定要静脉注射肝素,因为LPL对肝素亲和性很高。静脉注射肝素,使LPL从内皮细胞表面释放入血,这是测定血中LPL活性的一种必备操作。通常按每公斤体重10单位的量静脉注射,10分钟后采静脉血得到血浆再测LPL活性。一般静脉注射肝素后血浆总脂酶活性的1/3为LPL,剩余的几乎都是肝脂酶(HTGL)。目前还可用高浓度盐酸或鱼精蛋白选择性抑制LPL活性的方法测定其活性。最近报道,还可用LPL或HTGT抗体进行活性检测。 应用在生物制药方面,LPL 一些试剂盒中不可或缺的催化酶类,如用于检测人血液中甘油三酯含量的试剂盒就是利用LPL作为催化甘油三酯水解反应的催化酶。脂肪酸合成酶fatty acid synthetase 乙酰CoA+7丙=酸CoA+14NADPH+14H+棕榈酸+7CO2+ 8CoA+14NADP+6H2O。催化上述反应的酶称为脂肪酸合成酶,不过酵母酶的最终产物是棕榈酸CoA。如图所示,在丙二酸基和乙酰基缩合时,在每次延长C2单位的同时发生还原反应,在这个复杂的反应中,各有相应的酶参与作用。而酰基以CoA转移到酰基载体蛋白(ACP)上,以与此蛋白质结合的形态进行反应。通过如图所示的反应反复进行可生成棕榈酸。在大肠杆菌中,各部分反应的酶以及ACP是不结合在一起的,但在动物和酵母中,各种酶是结合型,形成所谓多酶复合体。脂肪酸合酶(英语:Fatty acid synthase)是一个具有多种功能的酶系统,在哺乳动物中,其分子量高达272kDa。在脂肪酸合酶中,底物和中间产物分子在各个功能结构域(可以位于同一酶分子,也可以位于不同酶分子)中传递直到完成脂肪酸的整个合成过程。12345代谢功能脂肪酸是脂肪族类酸,在能量运输和储存、细胞结构、提供激素合成的中间物等多个方面发挥着关键作用。脂肪酸的合成需要将乙酰辅酶A和丙二酸单酰辅酶A通过一系列的克莱森缩合反应然后脱羧(生物素作辅酶)来完成。在脂肪链的延伸过程中,通过连续的酮还原酶、脱水酶以及烯脂酰ACP还原酶的作用,加入的酮基(酰基)被还原为完全饱和的脂肪链。延伸中的脂肪链在这些酶活性位点之间循环传递时,共价连接在酰基载体蛋白的磷酸泛酰巯基乙胺(phophopantetheine)辅基上,并通过硫酯酶的作用而被释放。分类脂肪酸合酶被分为两大类: 类型I,是一个多功能单链蛋白质,普遍存在于哺乳动物和真菌中(虽然哺乳动物和真菌中的脂肪酸合酶在结构上有所区别)。 类型II,整个酶系统由多个单功能酶组成,存在于细菌中。结构哺乳动物中的脂肪酸合酶含有两个等同的多功能单链(形成同源二聚体),每一条氨基酸链的N端区域含有三个催化结构域(酮脂酰合成酶、脱水酶和单酰/乙酰转移酶),而C端区域则含有四个结构域(醇还原酶、酮脂酰还原酶、酰基载体蛋白和硫酯酶),这两个区域被中间600个氨基酸残基组成的核心区域所分隔。67脂肪酸合酶组构的传统模型(“头对尾”模型)大部分是基于双功能试剂1,3-dibromopropanone(DBP)能够将一个脂肪酸合酶单体上的酮脂酰合成酶结构域活性位点上的半胱氨酸(Cys161)的巯基和另一个单体上的载体蛋白结构域中的磷酸泛酰巯基乙胺辅基联接在一起的现象。89但对脂肪酸合酶二聚体所进行的突变研究发现酮脂酰合成酶和单酰/乙酰转移酶结构域可以与二聚体中任何一个单体上的载体蛋白共同作用;1011 而对于DBP联接实验结果的再分析显示酮脂酰合成酶的活性位点Cys161的巯基可以被联接到任一单体中载体蛋白4-磷酸泛酰巯基乙胺的巯基上。12。而且,近来发现只含有一个完整单体的异源二聚化的脂肪酸合酶能够进行棕榈酸酯的合成。13 以上的这些实验结果与之前的“头对尾”模型并不相符,于是另一个模型被提出:两个单体上的酮脂酰合成酶和单酰/乙酰转移酶结构域位于接近脂肪酸合酶二聚体中心的位置,在这一位置上,它们能够与任一单体中的载体蛋白接触。14调控脂肪酸合酶的代谢与体内平衡是由上游刺激因子(Upstream Stimulatory Factor)和固醇调节元件结合蛋白(sterol regulatory element binding protein-1c,SREBP-1c)进行转录调控,以对进食行为和胰岛素做出反应。1516疾病相关脂肪酸合酶的基因可能是一个癌基因。17 在癌症研究中发现,脂肪酸合酶的水平在乳腺癌中发生上调,它可以作为不准确癌症诊断的指标,也是化疗中的潜在靶标。1819参考文献1. Alberts, A.W., Strauss, A.W., Hennessy, S. & Vagelos, P.R. Regulation of synthesis of hepatic fatty acid synthetase: binding of fatty acid synthetase antibodies to polysomes. Proc. Natl. Acad. Sci. USA 72, 3956?39602. Stoops, J.K. et al. Presence of two polypeptide chains comprising fatty acid synthetase. Proc. Natl. Acad. Sci. USA 72, 1940?1944 (1975)3. Smith, S., Agradi, E., Libertini, L. & Dileepan, K.N. Specific release of the thioesterase component of the fatty acid synthetase multienzyme complex by limited trypsinization. Proc. Natl. Acad. Sci. USA 73, 1184?1188 (1976)4. Wakil, S.J. Fatty acid synthase, a proficient multifunctional enzyme. Biochemistry 28, 4523?4530 (1989)5. Smith, S., Witkowski, A. & Joshi, A.K. Structural and functional organization of the animal fatty acid synthase. Prog. Lipid Res. 42, 289?3176. Chirala, S.S., Jayakumar, A., Gu, Z.W. & Wakil, S.J. Human fatty acid synthase: role of interdomain in the formation of catalytically active synthase dimer. Proc. Natl. Acad. Sci. USA 98, 3104?3108 (2001)7. Smith, S. The animal fatty acid synthase: one gene, one polypeptide, seven enzymes. FASEB J. 8, 1248?1259 (1994)8. Stoops, J.K. & Wakil, S.J. Animal fatty acid synthetase. A novel arrangement of the -ketoacyl synthetase sites comprising domains of the two subunits. J. Biol. Chem. 256, 5128?5133 (1981)9. Stoops, J.K. & Wakil, S.J. Animal fatty acid synthetase. Identification of the residues comprising the novel arrangement of the -ketoacyl synthetase site and their role in its cold inactivation. J. Biol. Chem. 257, 3230?323510. Joshi, A.K., Rangan, V.S. & Smith, S. Differential affinity labeling of the two subunits of the homodimeric animal fatty acid synthase allows isolation of heterodimers consisting of subunits that have been independently modified. J. Biol. Chem. 273, 4937?4943 (1998)11. Rangan, V.S., Joshi, A.K. & Smith, S. Mapping the functional topology of the animal fatty acid synthase by mutant complementation in vitro. Biochemistry 40, 10792?10799 (2001)12. Witkowski, A. et al. Dibromopropanone cross-linking of the phosphopantetheine and active-site cysteine thiols of the animal fatty acid synthase can occur both inter- and intrasubunit. Reevaluation of the side-by-side, antiparallel subunit model. J. Biol. Chem. 274, 11557?11563 (1999)13. Joshi, A.K., Rangan, V.S., Witkowski, A. & Smith, S. Engineering of an active animal fatty acid synthase dimer with only one competent subunit. Chem. Biol. 10, 169?173 (2003)14. Asturias FJ et al., Structure and molecular organization of mammalian fatty acid synthase. Nature Structural & Molecular Biology 12, 225 - 232 (2005) PMID 1571156515. Paulauskis JD, Sul HS.Hormonal regulation of mouse fatty acid synthase gene transcription in liver.J Biol Chem. 1989 Jan 5;264(1):574-7.16. Latasa MJ, Griffin MJ, Moon YS, Kang C, Sul HS. Occupancy and function of the -150 sterol regulatory element and -65 E-box in nutritional regulation of the fatty acid synthase gene in living animals.Mol Cell Biol. 2003 Aug;23(16):5896-907.17. Baron A, Migita T, Tang D, Loda M. Fatty acid synthase: a metabolic oncogene in prostate cancer?. J Cell Biochem. 2004, 91 (1): 4753. doi:10.1002/jcb.10708. PMID 14689581. 18. Hunt DA. Lane HM. Zygmont ME. Dervan PA. Hennigar RA. MRNA stability and overexpression of fatty acid synthase in human breast cancer cell lines. Journal Article Anticancer Research. 27(1A):27-34, 2007 Jan-Feb. UI: 1735221219. Gansler TS. Hardman W 3rd. Hunt DA. Schaffel S. Hennigar RA. Increased expression of fatty acid synthase (OA-519) in ovarian neoplasms predicts shorter survival. Journal Article Human Pathology. 28(6):686-92, 1997 Jun. UI: 9191002白藜芦醇白藜芦醇是多酚类化合物,主要来源于蓼科植物虎杖Polygonum cuspidatum Sieb. et Zucc.的根茎提取物。虎杖:多年生灌木状草本,高达1米以上。根茎横卧地下,木质黄褐色,节明显。茎直立,圆柱形,表面无毛,散生着多数红色斑点,中空。单叶互生,阔卵形至近圆形,长7-12cm,宽5-9cm,先端短尖,基部圆形或楔形;叶柄长1-1.5cm托鞘膜质,褐色,早落。花期7-9月,果期9-10月,春秋均可采挖,切断,晒干。多生于山谷、溪旁或岸边。分布去国中部及南部,产于江苏、浙江、江西、福建、山东、河南、陕西、四川等地。 中文名称:白藜芦醇 中文别名:3,4,5-三羟基芪;虎杖甙元;茋三酚;芪三酚; 3,4,5-三羟基茋;3,4,5-三羟基二苯乙烯;(E)-5-2-(4-羟苯基)-乙烯基-1,3-苯二酚 英文名称:Resveratrol 英文别名:3,4,5-Trihydroxy-trans-stilbene;5-(1E)-2-(4-Hydroxyphenyl)ethenyl-1,3-benzenediol CAS号:501-36-0 分子式:C14H12O3 分子量:228.24 理化性质:无色针状结晶,易溶于乙醚,氯仿、甲醇、乙醇、丙酮等 反式白藜芦醇 摘自Microherb简介白藜芦醇是一种生物性很强的天然多酚类物质,又称为芪三酚,是肿瘤的化学预防剂,也是对降低血小板聚集,预防和治疗动脉粥样硬化、心脑血管疾病的化学预防剂。20世纪90年代,国际上普遍发现白藜芦醇大量存在于红葡萄酒中。美国农业部的研究结果表明,花生红衣与仁中也含有相当多的白藜芦醇。白藜芦醇的实验研究已经证实具有对心血管疾病和癌症的有益作用。白藜芦醇对激素依赖性肿瘤(包括乳腺癌、前列腺癌、子宫内膜癌和卵巢癌等)有明显的预防作用。还可对骨质疏松、痤疮(青春痘)及老年痴呆症有预防作用,具有抗病毒及免疫调节作用。 理化性质白藜芦醇化学名称为(E)-3,5,4-三羟基二苯乙烯。它是非黄酮类的多酚化合物,分子式为C14H12O3,相对分子质量为228.25,为白色针状晶体,易溶于乙醚、氯仿、甲醇、乙醇、丙酮、乙酸、乙酯等有机溶剂,在波长365nm的紫外光照射下能产生荧光,并能和三氯化铁-铁氢化钾起显色反应。1 物理性质白藜芦醇无味、白色晶体(甲醇);难溶于水,易溶于乙醇,丙酮等有机溶剂。熔点253-255,261即升华。 稳定性该品在紫外光照射下能产生荧光,pH10时,稳定性较差,遇三氯化铁铁氰化钾溶液呈蓝色,遇氨水等碱性溶液显红色。白藜芦醇对光不稳定,Microherb稳定性试验显示,高纯度白藜芦醇的乙醇溶液在避光条件下也仅能稳定数天,因此建议白藜芦醇含量分析时建议对照品溶液和样品溶液随配随用。 异构体白藜芦醇在自然条件下 以自由态和糖苷两种形式存在,白藜芦醇及其糖苷的化学结构还分别存在顺式和反式两种异构体,即顺式白藜芦醇(cis-Res)、反式白藜芦醇(transRes)以及顺式白藜芦醇糖苷(cis-PD) 、反式白藜芦醇糖苷(trans-PD)。后两种形式在肠道中糖苷酶作用下释放出白藜芦醇,植物中白藜芦醇主要以反式形式存在,研究表明反式异构体的生理活性强于顺式异构体。 植物来源在1940年首次发现白藜芦醇,20世纪70年代 首次发现葡萄中含有这种物质,后来人们发现虎杖、 花生、桑椹等植物中也含有这种成分。天然白藜芦醇是一种天然活性成分,它能以游离态(顺式、反式)和糖苷结合态(顺式、反式)2种形式在植物(如中药 材虎杖)中分布及生物合成,且均具有抗氧化效能,其中反式异构体的生物活性强于顺式,是葡萄中的一种重要的植物抗毒素。人们对其自然资源进行了广泛的研究,目前至少在21个科、31个属的72种植物中发现了白藜芦醇,如:葡萄科的葡萄属、蛇葡萄属,豆科的落花生属、决明属、槐属,百合科的藜芦属,桃金娘科的桉属,蓼科的蓼属等。含白藜芦醇的许多植物是常见的药用植物,如决明、藜芦、虎杖等,有的就是食物,如:葡萄、葡萄皮中白藜芦醇的含量最高,可达50100mg/kg。 1992年在商业葡萄酒中首次发现白藜芦醇。国外的大量研究证明,白藜芦醇是葡萄酒(尤其是红葡萄酒)中最重要的功效成分。但是,并不是所有的红葡萄酒中都有这种成分,勾兑酒和劣质酒中是测不出的。因为白藜芦醇是葡萄藤为了抵御霉菌入侵而产生一种植物抗毒素,产生后在葡萄皮里存留。只有按照传统方式带皮酿造的红酒,葡萄皮里的白藜芦醇才会在酿造过程中被逐渐产生的酒精所溶解。一般认为反式白藜芦醇是红酒能抗动脉粥样硬化症和冠心病的重要成分。因此,葡萄酒中白藜芦醇含量的高低就决定了葡萄酒健康功效的强弱。不同葡萄品种的白藜芦醇含量差异很大。根据美国康乃尔大学园艺系教授克雷西博士(Dr. Leory Creasy)的研究,原产法国波艮第地区的黑皮诺葡萄,所含白藜芦醇的浓度最高。原产波尔多地区的美乐和赤霞珠,也有相当高的含量。除了葡萄品种,另外决定白藜芦醇的含量的,就是葡萄产地。在寒冷潮湿地带种植的黑皮诺,尤其是在收获季节阴冷潮湿的地段,由于其条件有利于霉菌侵染,黑皮诺的葡萄藤就会产生更多的白藜芦醇来维护自体的健康。据克雷西博士的研究,来自美国芬格湖产区的黑皮诺葡萄酒,拥有最高的白藜芦醇含量,甚至超过黑皮诺的原产区法国波艮第的同类葡萄酒若干倍。 20世纪80年代,世界卫生组织调查发现,尽管法国人偏爱奶酪等高脂肪食物,但 虎杖冠心病发病率和死亡率低于其他西方国家,其原因可能是与法国人常饮含白藜芦醇的葡萄酒有关。此后,白藜芦醇备受关注。到目前为止至少已在21科、31属的72种植物中发现了白藜芦醇。白藜芦醇主要来源于蓼科Polygonaceae植物虎杖Polygonum cuspidatum Sieb. et Zucc.的干燥根茎和根,葡萄科植物葡萄Vitis vinifera果实的皮和籽,豆科Fabaceae植物花生Arachis hypogaea的种子等。 分析方法采用C18柱,以乙腈:水 (体积比30:70)溶液为流动相,用紫外检测器于306nm处检测。结果表明白藜芦醇浓度在10250g/mL时,浓度与峰面积呈良好的线性关系(r=0.9999);加标回收率为9.25%10.26 % ;最低检出浓度0.6mg/g。生产中可以调整流速同时测虎杖苷和白藜芦醇的酶解转化。 制备方法葡萄酒中含白藜芦醇 白藜芦醇在市场的需求量极大,由于其在植物中的含量很低,并且提取成本高,所以利用化学方法合成白藜芦醇已成为其开发的主要手段。 Perkin反应合成 以3,5-二异丙氧基苯甲醛和对异丙氧基苯乙酸为原料,利用Perkin反应首先合成了单一的顺式中间产物,然后再转化为单一的反式白藜芦醇,产率为55.2%。 Heck反应合成 利用Heck反应合成单一的反式白藜芦醇,产率达到70%以上,但关键中间体3,5一二乙酰氧基苯乙烯需经保护、Wittig反应、再保护三步反应方能获得。 WittigHorner反应合成 卓广澜等以3,5一二羟基苯甲酸为原料,经甲基化、肼化、氧化反应得到中间体3,5一二甲氧基苯甲醛,与对甲氧基苄磷酸酯经WittigHomer缩合反应得到单一的反式3,4,5一三甲氧基芪,最后用BBr3/CH2C:脱去甲基保护基,合成得到白藜芦醇,产率为35.7%。 用途说明作为COX?1选择性抑制剂;一种发现于葡萄皮以及其他植物中的酚类植物抗毒素,具有细胞内抗氧化活性以及激活SIRT1;一种NAD+依赖性组蛋白脱乙酰基酶,包含在线粒体的生物起源中以及增强过氧化物酶体激活增殖体受体共激活物-1 (PGC-1)以及FOXO活性;白藜芦醇的抗糖尿病的、保护神经的以及抑制脂肪行为可能是通过SIRT1活化作用促成。 药理作用白藜芦醇是一种天然的抗氧化剂,可降低血液粘稠度,抑制血小板凝结和血管舒张,保持血液畅通,可预防癌症的发生及发展,具有抗动脉粥样硬化和冠心病,缺血性心脏病,高血脂的防治作用。抑制肿瘤的作用还具有雌激素样作用,可用于治疗乳腺癌等疾病。 20世纪90年代,中国科技工作者对白藜芦醇的研究不断深入,并揭示其药理作用:抑制血小板非正常凝聚,预防心肌硬塞、脑栓塞,对缺氧心脏有保护作用,对肥胖者可以起一个控制与减肥作用,对烧伤或失血性休克引起的心输出量下降有效恢复,并能够扩张动脉血管及改善微循环。同时中国生物技术有限公司研究白藜芦醇的提取和工业化生产,现在已经初具规模。 1998年美国艾尔敏德尔编撰抗衰老圣典时,将白藜芦醇列为“100种最热门有效抗衰老物质”之一。中国农科院花生研究所禹山林研究员和国家著名医药专家毛文岳教授说,有关花生中白藜芦醇的研究开发将是21世纪最重要的营养课题之一。迄今美国宇航局已将花生定为航天食品,常吃花生制品,可缓解心血管疾病,降低血脂,延缓衰老。白藜芦醇保健食品将会成为21世纪营养健康的新时尚。 退烧与止痛作用白藜芦醇通过多种不同的途径发挥治疗功效, 具有一定的解热和止痛活性。在完整小鼠和大鼠身 上的研究显示,白藜芦醇可在不影响血压的情况下 赋予胃黏膜抵抗因胃分泌受压制而导致的应激性溃 疡的能力。 抗癌、抗突变作用1993年,Jayafilake等研究表明反式白藜芦醇和顺式白藜芦醇都具有抗癌活性,其原因是它们可以抑制蛋白质- 酪氨酸激酶的活性。Jang等研究小组进一步指出,白藜芦醇在癌症发生的3个阶段即起始、 增进和发展过程中,都有较大的防癌活性, 且对癌症发生3个阶段都有抑制乃至逆转作用: 一、抑制起始作用。减少自由基形成,诱导期药代酶增多,拮抗二恶英作用; 二、抑制增进作用。抑制环氧合酶(COX),抑制过氧化氢酶;三抑制发展作用。抑制癌细胞增殖,诱导癌细胞分化,诱导癌细胞凋亡。白藜芦醇可望作为酪氨酸蛋白激酶PTK的抑制剂,诸多医学研究发现白藜芦醇对乳腺癌、胃癌、结肠癌、前列腺癌、白血病、卵巢癌、皮肤癌等多种恶性肿瘤细胞均有明显的抑制作用。 1997年1月,美国芝加哥伊利诺斯大学药学院的 John Pezzuto教授领导的研究小组在著名的美国科学杂志上,发表了题为葡萄的天然产物白藜芦醇的抗癌活性的论文,引起医学科学界的轰动。论文证明白藜芦醇能有效抑制与癌症各过程相关的细胞活动。作为抗氧化剂、抗突变剂和抗炎剂,白藜芦醇显示出对癌症的化学预防能力,能够防止细胞癌病变并阻止恶性肿瘤扩散,还能抑制蛋白铬氨酸激酶,通过阻止激酶功能而起抗突变作用,还可抑制细胞炎。 白藜芦醇还可抑制细胞发炎。而细胞发炎与关 节炎和其他疾病有关。白藜芦醇同时还能抑制蛋白 酪氨酸激酶这一催化酪氨酸磷酸化的物质。该激酶 包含在有丝分裂调节的细胞内的细胞质信息传导 中。利用白藜芦醇抑制蛋白酪氨酸激酶,可能是通 过阻止激酶功能而起抗突变作用。 心血管保护作用在民间,早已用富含白藜芦醇的中药虎杖治疗和预防高血脂、 动脉硬化。研究表明,白藜芦醇主要从以下几个方面发挥抗动脉粥样硬化、防治冠心病从而对心血管起到保护作用:1、调节血脂;2、抑制血小板凝集,促进纤维蛋白溶解,抗血栓形成作用;3、保护血管内皮,抑制内皮细胞增殖;4、保护血管平滑机细胞,抑制其增殖;5、抗白细胞作用; 6、拮抗内皮素-1 (endothelin-1,ET-1)作用;7、抗低密度脂蛋白氧化的功能。有研究在内毒素或凝血酵素诱导的血小板激活作用的实验中发现,用白藜芦醇洗涤的血小板预孵化后,在生理血浆浓度中脂多糖单独或脂多糖和凝血酵素激活的血小板对胶原质的黏附被阻滞。用白藜芦醇预处理的血小板黏附纤维蛋白原也受到阻滞。白藜芦醇及其衍生物是近年来研究较多的一类植物抗毒素,其心血管保护作用渐渐地成为研究热点,可望在预防和治疗心血管疾病的药物开发方面有所作为,但是其作用机制远未明确,有待进一步深入研究。 预防心脏和肝脏损伤白藜芦醇可抑制小鼠肝部甘油三酸酯和胆固醇 的沉积。其同样可通过抑制小鼠肝部脂肪过氧化反 应而促使天冬氨酸转氨酶和丙胺酸转氨酶水平上 升。通过分析血清中这2种酶,可得到心脏和肝脏 是否良好的诊断信息。 抗血栓功能白藜芦醇可抑制脂氧合酶合成,该酶存在于白 细胞、心脏、大脑、肺和脾中。因此白藜芦醇可防止 血管中血液凝块的形成。且在使用可乐宁这种抗高 血压药物治疗后,它同样可抑制血小板的集结。 提升免疫系统活性白藜芦醇还可通过增强免疫系统而促进烫伤愈合。有人研究了白藜芦醇在恢复烫伤小鼠的受抑制 细胞性、体液性和非特异性免疫功能方面的功效,对 白藜芦醇的受控使用提供了一种药物依赖式的免疫调节作用。对不同程度严重烫伤小鼠的研究显示, 白藜芦醇可恢复其受损功能,如对抗原信号的回应 能力、增生能力、白细胞介素合成能力和通过淋巴 细胞的抗体合成能力。严重烧伤的动物在利用受控 白藜芦醇治疗后,其嗜中性粒细胞水平及其黏附率 恢复到接近普通水平,而且存活时间延长。 抗氧化、抗自由基作用白藜芦醇是存在于植物中的天然抗氧化剂,主要通过清除或抑制自由基生成,抑制脂质过氧化、调节抗氧化相关酶活性等机制发挥抗氧化作用。多羟基芪类物质大都具有抗氧化、抗自由基作用。当白藜芦醇在1.3g /mL时,能明显抑制大鼠红细胞的自氧化溶血和由H2O2 引起的氧化溶血,对小鼠心、 肝、 脑、 肾的体内外过氧化脂质的产生有明显的抑制作用。白藜芦醇的抗氧化、诱除自由基和影响花生四烯酸代谢的药理功能引起了人们的广泛兴趣,因为这些生理代谢涉及到与人体健康密切相关的许多生理疾病,例如动脉粥样硬化、 老年痴呆症、 病毒性肝炎、 胃溃疡、 炎症与过敏反应等。 抗炎、抗菌作用白藜芦醇对金黄色葡萄球菌、卡他球菌、大肠杆菌、绿脓杆菌有抑制作用,并对孤儿病毒、单纯疱疹病毒及肠道病毒、柯萨奇A、B组有较强的抑制作用。白藜芦醇通过减少血小板的黏附,在抗炎过程中改变血小板的活性达到抗炎。 延年益寿意大利比萨的一组科学家通过研究发现,葡萄 中含有的白藜芦醇能助鱼儿延寿。接受实验的100 多条鱼中,30条每天被喂少量白藜芦醇,60条被喂适量,20条被喂以很大分量,结果第1组鱼没见什么效果,第2组鱼的寿命延长了27% ,第3组鱼的寿命延长了50%。这是科学家第一次发现白藜芦 醇对脊椎动物也有延年益寿的作用。 减肥作用因为白藜芦醇有着抗癌、抗氧化、抗炎、抗菌的作用而爱到人们的喜爱,植物来源中说到因为法国人常饮高脂肪物中含有白藜芦醇,所以法国人的冠心病发病率底于其它西方国家,从此信息中可得知白藜芦醇因为有效地压制高脂肪的防治作用。目前已有部分国家和地区把白藜芦醇及其制品作为膳食补充剂开发白藜芦醇。 临床应用由于白藜芦醇具有多种生物和药理活性,使其广泛应用于食品、医药、保健品、化妆品等领域。白藜芦醇具有优良药理活性和保健功能 其市场需求很大且与日剧增,目前已有大部分国家和地区都开发了白藜芦醇及其制品。美国已把白藜芦醇作为膳食补充剂,日本已将从植物提取的白藜芦醇作为食品添加剂 中国已将含白藜芦醇的植物提取物制成降脂美容的天然保健食品。 降脂作用因为白藜芦醇有着抗癌、抗氧化、抗炎、抗菌的作用而爱到人们的喜爱,植物来源中说到因为法国人常饮高脂肪物中含有白藜芦醇,所以法国人的冠心病发病率底于其它西方国家,从此信息中可得知白藜芦醇因为有效地压制高脂肪的防治作用。 预防食物过敏某些人的身体免疫机制会对鸡蛋、小麦和牛奶等食物产生过敏反应,情况严重的会导致休克甚至死亡。日本研究人员在动物实验中发现,红葡萄酒中含量丰富的白藜芦醇能够预防这种食物过敏。 副作用关节痛在年老后,会发现关节不再像以前那样灵活。如果一直摄入白藜芦醇,可能会更早出现关节痛的问题。如果发现这种情况,可以用多种维生素与白藜芦醇一起服用,或减少摄入剂量,这可以有效减轻导致肿胀的炎症。 失眠很多使用白藜芦醇的人说它的主要副作用是导致失眠。实际上,失眠的原因有很多,而白藜芦醇很有可能仅是其中一种因素。如果面临很大压力,很有可能是失眠的主要原因。 焦虑白藜芦醇另一个副作用是引起焦虑。这一问题也可以通过与多种维生素一起服用加以克服。这一副作用通常可以在一到两周后自然消失,因此没有必要太过担心。但如果焦虑继续存在,可以尝试服用帮助镇静的贯叶连翘提取物。绿茶和白藜芦醇一起服用,有助于减少焦虑。 与其他药物产生反应白藜芦醇最大的副作用可能是血液稀释,这可能会给正在服用其他药物的人产生不利影响。因此,了解白藜芦醇是否与其他药物产生交互作用很重要。此外,白藜芦醇与其他维生素不适当的结合应用也会产生负面影响。 安全性目前还没有关于高剂量摄人白藜芦醇的安全性 和副作用的报道。既然白藜芦醇在发挥其功能上是 如此有效,其剂量也因此而较低。在普通剂量范围 内没有其任何值得注意的不良作用被报道。 生产方法从植物中提取可从含白藜芦醇的植物如虎杖、葡萄等中提取。目前从虎杖中提取白藜芦醇的研究较多,一般采用 以下方法。 醇提法:多采用乙醇回流提取或索氏提取。张建超等利用正交设计确定了醇提最优条件为:95 乙醇15倍量,回流提取3次,2 h/次E。也有用 50 乙醇或甲醇提取的。 水提法:取虎杖粗粉水煎,过滤浓缩。用95 乙醇溶解过滤,除杂,回收乙醇。用乙酸乙酯萃取4 次,合并萃取液。减压回收乙酸乙酯至浸膏状,用稀 乙醇溶解,放置,过滤,析出物即为白藜芦醇苷E。 薄层色谱法:采用此法可将白藜芦醇苷与虎杖 中其他蒽醌类成分有效分离。薄层条件:流动相:3 十六烷三甲基溴化铵水溶液(CTAB)一乙酰丙 酮(8:14)的微碱性溶液;固定相:聚酰胺铺板。取 虎杖药粉置锥形瓶中,加入95 乙醇适量,浸渍数 小时,取乙醇液点于聚酰胺板上,以上述展开剂上行 展开,即可分离出白藜芦醇苷l8。 超临界流体技术:曹庸等采用超临界CO。流体 技术对虎杖中自藜芦醇进行萃取,获得了初步萃取 条件_
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026中考英语语法复习分类训练:状语从句100题(中考试题+中考模拟)解析版
- 2026年人教版八年级物理上册期中冲刺复习(综合题30道)原卷版+解析
- 医学生基础医学 感染全身反应护理课件
- 医学生基础医学 腹痛性质判断护理课件
- 2026年云南高考语文总复习:文言文阅读词汇(知识梳理+考点)解析版
- 医学女性甲亢诊疗案例教学课件
- 2026外研版高考英语复习讲义 必修第三册 Unit 5 What an adventure
- 2026年高考英语一轮复习:说明文阅读理解(含答案解析)
- 2026年高考数学一轮复习:直线的方程(讲义)解析版
- 临床科室成本节约的绩效激励设计
- (课本版)《报任安书》
- 刘老根大舞台开幕曲简谱乐谱
- 新闻采访学2023章节测试答案-新闻采访学超星尔雅答案
- 自动喷漆线使用说明书
- 西安某综合办公楼弱电智能化设计方案
- 西南交通大学机械原理课后习题答案
- GB/T 8642-2002热喷涂抗拉结合强度的测定
- GB/T 27551-2011金属材料焊缝破坏性试验断裂试验
- 计量基础知识培训 课件
- 超星网络课隋唐史答案
- 《风景名胜区条例》解读课件
评论
0/150
提交评论