摆式波浪发电装置结构设计.zip

摆式波浪发电装置结构设计.zip

收藏

资源目录
跳过导航链接。
摆式波浪发电装置结构设计.zip
设计说明书.doc---(点击预览)
开题报告.docx---(点击预览)
任务书(带参考文献).docx---(点击预览)
中英文翻译.doc---(点击预览)
传动轴.dwg
双联齿轮.dwg
大齿轮.dwg
小齿轮.dwg
摆动式波浪能装配图.dwg
棘轮.dwg
横梁.dwg
零件图CAD集合.dwg
压缩包内文档预览:

资源预览需要最新版本的Flash Player支持。
您尚未安装或版本过低,建议您

!【包含文件如下】【机械类设计类】CAD图纸+word设计说明书.doc【需要咨询购买全套设计请企鹅97666224】.bat中英文翻译.doc任务书(带参考文献).docx传动轴.dwg双联齿轮.dwg大齿轮.dwg小齿轮.dwg开题报告.docx摆动式波浪能装配图.dwg棘轮.dwg横梁.dwg设计说明书.doc零件图CAD集合.dwg目 录摘  要IIIAbstractIV1  绪论11.1课题背景及研究意义11.2 国内外研究现状11.2.1 波浪能装置漂浮式的典型形式21.2.2 固定式波浪能装置的典型形式41.3 本文主要研究内容51.4 本文主要研究的重点62 摆式波浪能发电装置方案设计72.1 概述72.2 方案设计72.3 整体方案论证103 摆式波浪能发电装置的结构设计113.1 漂浮系统的设计113.2 主体结构的设计113.3 各组成零件的设计11总 结15参考文献16致   谢17摆式波浪发电装置设计摘  要波浪能转换技术作为一种具有广阔应用前景的绿色可再生新能源技术,得到世界诸国越来越多的关注与研究。转换技术的研究主要集中在不同形式转换装置的研究与应用上。本文简要介绍了波浪能转换技术的研究背景及现阶段国内外研究现状,深入分析了各种不同形式的波浪能转换装置的原理及特性。在此基础上提出了一套新型的波浪能转换装置的设计方案。通过参考实验室试验研究取得的成果、理论分析与计算以及计算机辅助建模与仿真分析等研究方式,具体开展并完成了以下几个方面的研究工作:通过研究提出了各种波浪能装置国外海洋能的特点,这改变机械结构和工作原理,转换效率变化大部分理论或初步设计。通过利用海浪能量的技术是比较新的,对相关设备进行了优化设计还是比较小的,类似的研究一直领先意义的优化器件的设计。关键词:摆式发电装置,齿轮传动,波浪能
编号:12118004    类型:共享资源    大小:3.99MB    格式:ZIP    上传时间:2018-12-24 上传人:小*** IP属地:福建
100
积分
关 键 词:
摆式波浪发电
资源描述:

!【包含文件如下】【机械类设计类】CAD图纸+word设计说明书.doc【需要咨询购买全套设计请企鹅97666224】.bat

中英文翻译.doc

任务书(带参考文献).docx

传动轴.dwg

双联齿轮.dwg

大齿轮.dwg

小齿轮.dwg

开题报告.docx

摆动式波浪能装配图.dwg

棘轮.dwg

横梁.dwg

设计说明书.doc

零件图CAD集合.dwg

目 录


摘  要 III

Abstract IV

1  绪论 1

1.1课题背景及研究意义 1

1.2 国内外研究现状 1

1.2.1 波浪能装置漂浮式的典型形式 2

1.2.2 固定式波浪能装置的典型形式 4

1.3 本文主要研究内容 5

1.4 本文主要研究的重点 6

2 摆式波浪能发电装置方案设计 7

2.1 概述 7

2.2 方案设计 7

2.3 整体方案论证 10

3 摆式波浪能发电装置的结构设计 11

3.1 漂浮系统的设计 11

3.2 主体结构的设计 11

3.3 各组成零件的设计 11

总 结 15

参考文献 16

致   谢 17


摆式波浪发电装置设计


摘  要


波浪能转换技术作为一种具有广阔应用前景的绿色可再生新能源技术,得到

世界诸国越来越多的关注与研究。转换技术的研究主要集中在不同形式转换装置

的研究与应用上。本文简要介绍了波浪能转换技术的研究背景及现阶段国内外研

究现状,深入分析了各种不同形式的波浪能转换装置的原理及特性。在此基础上

提出了一套新型的波浪能转换装置的设计方案。通过参考实验室试验研究取得的

成果、理论分析与计算以及计算机辅助建模与仿真分析等研究方式,具体开展并

完成了以下几个方面的研究工作:

通过研究提出了各种波浪能装置国外海洋能的特点,这改变机械结构和工作

原理,转换效率变化大部分理论或初步设计。通过利用海浪能量的技术是比较新

的,对相关设备进行了优化设计还是比较小的,类似的研究一直领先意义的优化

器件的设计。


关键词:摆式发电装置,齿轮传动,波浪能


内容简介:
Self-Excitation and Harmonics in Wind Power GenerationE. Muljadi , C. P. ButterfieldNational Renewable Energy Laboratory, Golden, Colorado 80401H. RomanowitzOak Creek Energy Systems Inc.,Mojave, California 93501R. YingerSouthern California Edison,Rosemead, California 91770Traditional wind turbines are commonly equipped with induction generators because they are inexpensive, rugged, and require very little maintenance. Unfortunately, induction generators require reactive power from the grid to operate,capacitor compensation is often used. Because the level of required reactive power varies with the output power, the capacitor compensation must be adjusted as the output power varies. The interactions among the wind turbine, the power network, and the capacitor compensation are important aspects of wind generation that may result in self-excitation and higher harmonic content in the output current. This paper examines the factors that control these phenomena and gives some guidelines on how they can be controlled or eliminated.1Introduction Many of todays operating wind turbines have fixed speed induction generators that are very reliable, rugged, and low cost. During normal operation, an induction machine requires reactive power from the grid at all times. The most commonly used reactive power compensation is capacitor compensation. It is static, low cost. Different sizes of capacitors are generally needed for different levels of generation.Although reactive power compensation can be beneficial to the overall operation of wind turbines, we should be sure the compensation is the proper size and provides proper control. Two important aspects of capacitor compensation, self-excitation and harmonics ,are the subjects of this paper.2Power System Network Description A diagram representing this system is shown in Fig(1). The power system components analyzed include the following: An infinite bus and a long line connecting the wind turbine to the substation A transformer at the pad mount Capacitors connected in the low voltage side of the transformer An induction generatorFor the self-excitation, we focus on the turbine and the capacitor compensation only the right half of Fig. For harmonic analysis, we consider the entire network shown in Fig.3. Self-Excitation3.1 The Nature of Self-Excitation in an Induction Generator. Self-excitation is a result of the interactions among the induction generator, capacitor compensation, electrical load, and magnetic saturation. This section investigates the self-excitation process in an off-grid induction generator, knowing the limits and the boundaries of self-excitation operation will help us to either utilize or to avoid self-excitation.Fixed capacitors are the most commonly used method of reactive power compensation in a fixed-speed wind turbine. An induction generator alone cannot generate its own reactive power; it requires reactive power from the grid to operate normally, and the grid dictates the voltage and frequency of the induction generator.One potential problem arising from self-excitation is the safety aspect. Because the generator is still generating voltage, it may compromise the safety of the personnel inspecting or repairing the line or generator. Another potential problem is that the generators operating voltage and frequency may vary. Thus, if sensitive equipment is connected to the generator during self-excitation, that equipment may be damaged by over/under voltage and over/ under frequency operation. In spite of the disadvantages of operating the induction generator in self-excitation, some people use this mode for dynamic braking to help control the rotor speed during an emergency such as a grid loss condition. With the proper choice of capacitance and resistor load, self-excitation can be used to maintain the wind turbine at a safe operating speed during grid loss and mechanical brake malfunctions。3.2 Steady-State Representation. The steady-state analysis is important to understand the conditions required to sustain or to diminish self-excitation. As explained above, self-excitation can be a good thing or a bad thing, depending on how we encounter the situation. Figure 2 shows an equivalent circuit of a capacitor compensated induction generator. As mentioned above, self-excitation operation requires that the balance of both real and reactive power must be maintained. Equation (1)gives the total admittance of the system shown in Fig(2):+=0 (1)where= effective admittance representing the stator winding, the capacitor, and the load seen by node M= effective admittance representing the magnetizing branch as seen by node M,referred to the stator side= effective admittance representing the rotor winding as seen by node M, referred to the stator sideEquation 1 can be expanded into the equations for imaginary and real parts as shown in Eqs.2and3: (2)Fig. 2 Per phase equivalent circuit of an induction generator under self-excitation modeFig.3 A typical magnetization characteristic = stator winding resistance= stator winding leakage inductance = rotor winding resistance= rotor winding leakage inductance= stator winding resistanceS = operating slip = operating frequency = load resistance connected to the terminalsC = capacitor compensation =阻抗One important aspect of self-excitation is the magnetizing characteristic of the induction generator. Figure 3 shows the relationship between the flux linkage and the magnetizing inductance for a typical generator; an increase in the flux linkage beyond a certain level reduces the effective magnetizing inductance . This graph can be derived from the experimentally determined no-load characteristic of the induction generator. The voltage at the terminals of the induction generator presented in Fig . (5) shows the impact of changes in the capacitance and load resistance. As shown in Fig. (5), the load resistance does not affect the terminal voltage, especially at the higher rpm (higher frequency), but the capacitance has a significant impact on the voltage profile at the generator terminals. A larger capacitance yields less voltage variation with rotor speed, while a smaller capacitance yields m ore voltage variation with rotor speed. As shown in Fig. 6, for a given capacitance, changing the effective value of the load resistance can modulate the torque-speed characteristic.These concepts of self-excitation can be exploited to provide dynamic braking for a wind turbine as mentioned above to prevent the turbine from running away when it loses its connection to the grid; one simply needs to choose the correct values for capacitance (a high value) and load resistance to match the turbine power output. Appropriate operation over a range of wind speeds can be achieved by incorporating a variable resistance and adjusting it depending on wind speed.3.3 Dynamic Behavior. This section examines the transient behavior in self-excitation operation. We choose a value of 3.8 mF capacitance and a load resistance of 1.0 for this simulation. The constant driving torque is set to be 4500 Nm. Note that the wind turbine aerodynamic characteristic and the turbine control system are not included in this simulation because we are more interested in the self-excitation process itself. Thus, we focus on the electrical side of the equations.Figure 7 shows time series of the rotor speed and the electrical output power. In this case, the induction generator starts from rest. The speed increases until it reaches its rated speed. It is initially connected to the grid and at t=3.1 seconds (s), the grid is disconnected and the induction generator enters self-excitation mode. At t=6.375 s, the generator is reconnected to the grid, terminating the self-excitation. The rotor speed increases slightly during self-excitation, but, eventually, the generator torque matches the driving torque (4500 Nm), and the rotor speed is stabilized. When the generator is reconnected to the grid without synchronization, there is a sudden brief transient in the torque as the generator resynchronizes with the grid. Once this occurs, the rotor speed settles at the same speed as before the grid disconnection.Figure 8 (a) plots per phase stator voltage. It shows that the stator voltage is originally the same as the voltage of the grid to which it is connected. During the self-excitation mode 3.1 st0,Q0. (c) Phasor diagram for P0,Q 0, Q0 (the turbine generates real power but absorbs reactive power), then 0, Q0 (the turbine generates both real and reactive power), then and we may experience saturation.Self-Excitation and Harmonics in Wind Power GenerationE. Muljadi , C. P. ButterfieldNational Renewable Energy Laboratory, Golden, Colorado 80401H. RomanowitzOak Creek Energy Systems Inc.,Mojave, California 93501R. YingerSouthern California Edison,Rosemead, California 91770Traditional wind turbines are commonly equipped with induction generators because they are inexpensive, rugged, and require very little maintenance. Unfortunately, induction generators require reactive power from the grid to operate,capacitor compensation is often used. Because the level of required reactive power varies with the output power, the capacitor compensation must be adjusted as the output power varies. The interactions among the wind turbine, the power network, and the capacitor compensation are important aspects of wind generation that may result in self-excitation and higher harmonic content in the output current. This paper examines the factors that control these phenomena and gives some guidelines on how they can be controlled or eliminated.1Introduction Many of todays operating wind turbines have fixed speed induction generators that are very reliable, rugged, and low cost. During normal operation, an induction machine requires reactive power from the grid at all times. The most commonly used reactive power compensation is capacitor compensation. It is static, low cost. Different sizes of capacitors are generally needed for different levels of generation.Although reactive power compensation can be beneficial to the overall operation of wind turbines, we should be sure the compensation is the proper size and provides proper control. Two important aspects of capacitor compensation, self-excitation and harmonics ,are the subjects of this paper.2Power System Network Description A diagram representing this system is shown in Fig(1). The power system components analyzed include the following: An infinite bus and a long line connecting the wind turbine to the substation A transformer at the pad mount Capacitors connected in the low voltage side of the transformer An induction generatorFor the self-excitation, we focus on the turbine and the capacitor compensation only the right half of Fig. For harmonic analysis, we consider the entire network shown in Fig.3. Self-Excitation3.1 The Nature of Self-Excitation in an Induction Generator. Self-excitation is a result of the interactions among the induction generator, capacitor compensation, electrical load, and magnetic saturation. This section investigates the self-excitation process in an off-grid induction generator, knowing the limits and the boundaries of self-excitation operation will help us to either utilize or to avoid self-excitation.Fixed capacitors are the most commonly used method of reactive power compensation in a fixed-speed wind turbine. An induction generator alone cannot generate its own reactive power; it requires reactive power from the grid to operate normally, and the grid dictates the voltage and frequency of the induction generator.One potential problem arising from self-excitation is the safety aspect. Because the generator is still generating voltage, it may compromise the safety of the personnel inspecting or repairing the line or generator. Another potential problem is that the generators operating voltage and frequency may vary. Thus, if sensitive equipment is connected to the generator during self-excitation, that equipment may be damaged by over/under voltage and over/ under frequency operation. In spite of the disadvantages of operating the induction generator in self-excitation, some people use this mode for dynamic braking to help control the rotor speed during an emergency such as a grid loss condition. With the proper choice of capacitance and resistor load, self-excitation can be used to maintain the wind turbine at a safe operating speed during grid loss and mechanical brake malfunctions。3.2 Steady-State Representation. The steady-state analysis is important to understand the conditions required to sustain or to diminish self-excitation. As explained above, self-excitation can be a good thing or a bad thing, depending on how we encounter the situation. Figure 2 shows an equivalent circuit of a capacitor compensated induction generator. As mentioned above, self-excitation operation requires that the balance of both real and reactive power must be maintained. Equation (1)gives the total admittance of the system shown in Fig(2):+=0 (1)where= effective admittance representing the stator winding, the capacitor, and the load seen by node M= effective admittance representing the magnetizing branch as seen by node M,referred to the stator side= effective admittance representing the rotor winding as seen by node M, referred to the stator sideEquation 1 can be expanded into the equations for imaginary and real parts as shown in Eqs.2and3: (2)Fig. 2 Per phase equivalent circuit of an induction generator under self-excitation modeFig.3 A typical magnetization characteristic = stator winding resistance= stator winding leakage inductance = rotor winding resistance= rotor winding leakage inductance= stator winding resistanceS = operating slip = operating frequency = load resistance connected to the terminalsC = capacitor compensation =阻抗One important aspect of self-excitation is the magnetizing characteristic of the induction generator. Figure 3 shows the relationship between the flux linkage and the magnetizing inductance for a typical generator; an increase in the flux linkage beyond a certain level reduces the effective magnetizing inductance . This graph can be derived from the experimentally determined no-load characteristic of the induction generator. The voltage at the terminals of the induction generator presented in Fig . (5) shows the impact of changes in the capacitance and load resistance. As shown in Fig. (5), the load resistance does not affect the terminal voltage, especially at the higher rpm (higher frequency), but the capacitance has a significant impact on the voltage profile at the generator terminals. A larger capacitance yields less voltage variation with rotor speed, while a smaller capacitance yields m ore voltage variation with rotor speed. As shown in Fig. 6, for a given capacitance, changing the effective value of the load resistance can modulate the torque-speed characteristic.These concepts of self-excitation can be exploited to provide dynamic braking for a wind turbine as mentioned above to prevent the turbine from running away when it loses its connection to the grid; one simply needs to choose the correct values for capacitance (a high value) and load resistance to match the turbine power output. Appropriate operation over a range of wind speeds can be achieved by incorporating a variable resistance and adjusting it depending on wind speed.3.3 Dynamic Behavior. This section examines the transient behavior in self-excitation operation. We choose a value of 3.8 mF capacitance and a load resistance of 1.0 for this simulation. The constant driving torque is set to be 4500 Nm. Note that the wind turbine aerodynamic characteristic and the turbine control system are not included in this simulation because we are more interested in the self-excitation process itself. Thus, we focus on the electrical side of the equations.Figure 7 shows time series of the rotor speed and the electrical output power. In this case, the induction generator starts from rest. The speed increases until it reaches its rated speed. It is initially connected to the grid and at t=3.1 seconds (s), the grid is disconnected and the induction generator enters self-excitation mode. At t=6.375 s, the generator is reconnected to the grid, terminating the self-excitation. The rotor speed increases slightly during self-excitation, but, eventually, the generator torque matches the driving torque (4500 Nm), and the rotor speed is stabilized. When the generator is reconnected to the grid without synchronization, there is a sudden brief transient in the torque as the generator resynchronizes with the grid. Once this occurs, the rotor speed settles at the same speed as before the grid disconnection.Figure 8 (a) plots per phase stator voltage. It shows that the stator voltage is originally the same as the voltage of the grid to which it is connected. During the self-excitation mode 3.1 st0,Q0. (c) Phasor diagram for P0,Q 0, Q0 (the turbine generates real power but absorbs reactive power), then 0, Q0 (the turbine generates both real and reactive power), then and we may experience saturation.Self-Excitation and Harmonics in Wind Power GenerationE. Muljadi , C. P. ButterfieldNational Renewable Energy Laboratory, Golden, Colorado 80401H. RomanowitzOak Creek Energy Systems Inc.,Mojave, California 93501R. YingerSouthern California Edison,Rosemead, California 91770Traditional wind turbines are commonly equipped with induction generators because they are inexpensive, rugged, and require very little maintenance. Unfortunately, induction generators require reactive power from the grid to operate,capacitor compensation is often used. Because the level of required reactive power varies with the output power, the capacitor compensation must be adjusted as the output power varies. The interactions among the wind turbine, the power network, and the capacitor compensation are important aspects of wind generation that may result in self-excitation and higher harmonic content in the output current. This paper examines the factors that control these phenomena and gives some guidelines on how they can be controlled or eliminated.1Introduction Many of todays operating wind turbines have fixed speed induction generators that are very reliable, rugged, and low cost. During normal operation, an induction machine requires reactive power from the grid at all times. The most commonly used reactive power compensation is capacitor compensation. It is static, low cost. Different sizes of capacitors are generally needed for different levels of generation.Although reactive power compensation can be beneficial to the overall operation of wind turbines, we should be sure the compensation is the proper size and provides proper control. Two important aspects of capacitor compensation, self-excitation and harmonics ,are the subjects of this paper.2Power System Network Description A diagram representing this system is shown in Fig(1). The power system components analyzed include the following: An infinite bus and a long line connecting the wind turbine to the substation A transformer at the pad mount Capacitors connected in the low voltage side of the transformer An induction generatorFor the self-excitation, we focus on the turbine and the capacitor compensation only the right half of Fig. For harmonic analysis, we consider the entire network shown in Fig.3. Self-Excitation3.1 The Nature of Self-Excitation in an Induction Generator. Self-excitation is a result of the interactions among the induction generator, capacitor compensation, electrical load, and magnetic saturation. This section investigates the self-excitation process in an off-grid induction generator, knowing the limits and the boundaries of self-excitation operation will help us to either utilize or to avoid self-excitation.Fixed capacitors are the most commonly used method of reactive power compensation in a fixed-speed wind turbine. An induction generator alone cannot generate its own reactive power; it requires reactive power from the grid to operate normally, and the grid dictates the voltage and frequency of the induction generator.One potential problem arising from self-excitation is the safety aspect. Because the generator is still generating voltage, it may compromise the safety of the personnel inspecting or repairing the line or generator. Another potential problem is that the generators operating voltage and frequency may vary. Thus, if sensitive equipment is connected to the generator during self-excitation, that equipment may be damaged by over/under voltage and over/ under frequency operation. In spite of the disadvantages of operating the induction generator in self-excitation, some people use this mode for dynamic braking to help control the rotor speed during an emergency such as a grid loss condition. With the proper choice of capacitance and resistor load, self-excitation can be used to maintain the wind turbine at a safe operating speed during grid loss and mechanical brake malfunctions。3.2 Steady-State Representation. The steady-state analysis is important to understand the conditions required to sustain or to diminish self-excitation. As explained above, self-excitation can be a good thing or a bad thing, depending on how we encounter the situation. Figure 2 shows an equivalent circuit of a capacitor compensated induction generator. As mentioned above, self-excitation operation requires that the balance of both real and reactive power must be maintained. Equation (1)gives the total admittance of the system shown in Fig(2):+=0 (1)where= effective admittance representing the stator winding, the capacitor, and the load seen by node M= effective admittance representing the magnetizing branch as seen by node M,referred to the stator side= effective admittance representing the rotor winding as seen by node M, referred to the stator sideEquation 1 can be expanded into the equations for imaginary and real parts as shown in Eqs.2and3: (2)Fig. 2 Per phase equivalent circuit of an induction generator under self-excitation modeFig.3 A typical magnetization characteristic = stator winding resistance= stator winding leakage inductance = rotor winding resistance= rotor winding leakage inductance= stator winding resistanceS = operating slip = operating frequency = load resistance connected to the terminalsC = capacitor compensation =阻抗One important aspect of self-excitation is the magnetizing characteristic of the induction generator. Figure 3 shows the relationship between the flux linkage and the magnetizing inductance for a typical generator; an increase in the flux linkage beyond a certain level reduces the effective magnetizing inductance . This graph can be derived from the experimentally determined no-load characteristic of the induction generator. The voltage at the terminals of the induction generator presented in Fig . (5) shows the impact of changes in the capacitance and load resistance. As shown in Fig. (5), the load resistance does not affect the terminal voltage, especially at the higher rpm (higher frequency), but the capacitance has a significant impact on the voltage profile at the generator terminals. A larger capacitance yields less voltage variation with rotor speed, while a smaller capacitance yields m ore voltage variation with rotor speed. As shown in Fig. 6, for a given capacitance, changing the effective value of the load resistance can modulate the torque-speed characteristic.These concepts of self-excitation can be exploited to provide dynamic braking for a wind turbine as mentioned above to prevent the turbine from running away when it loses its connection to the grid; one simply needs to choose the correct values for capacitance (a high value) and load resistance to match the turbine power output. Appropriate operation over a range of wind speeds can be achieved by incorporating a variable resistance and adjusting it depending on wind speed.3.3 Dynamic Behavior. This section examines the transient behavior in self-excitation operation. We choose a value of 3.8 mF capacitance and a load resistance of 1.0 for this simulation. The constant driving torque is set to be 4500 Nm. Note that the wind turbine aerodynamic characteristic and the turbine control system are not included in this simulation because we are more interested in the self-excitation process itself. Thus, we focus on the electrical side of the equations.Figure 7 shows time series of the rotor speed and the electrical output power. In this case, the induction generator starts from rest. The speed increases until it reaches its rated speed. It is initially connected to the grid and at t=3.1 seconds (s), the grid is disconnected and the induction generator enters self-excitation mode. At t=6.375 s, the generator is reconnected to the grid, terminating the self-excitation. The rotor speed increases slightly during self-excitation, but, eventually, the generator torque matches the driving torque (4500 Nm), and the rotor speed is stabilized. When the generator is reconnected to the grid without synchronization, there is a sudden brief transient in the torque as the generator resynchronizes wit
温馨提示:
1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
2: 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
3.本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
提示  人人文库网所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
关于本文
本文标题:摆式波浪发电装置结构设计.zip
链接地址:https://www.renrendoc.com/p-12118004.html

官方联系方式

2:不支持迅雷下载,请使用浏览器下载   
3:不支持QQ浏览器下载,请用其他浏览器   
4:下载后的文档和图纸-无水印   
5:文档经过压缩,下载后原文更清晰   
关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

网站客服QQ:2881952447     

copyright@ 2020-2025  renrendoc.com 人人文库版权所有   联系电话:400-852-1180

备案号:蜀ICP备2022000484号-2       经营许可证: 川B2-20220663       公网安备川公网安备: 51019002004831号

本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知人人文库网,我们立即给予删除!