垂直轴潮流能水轮机转子结构设计【机械类毕业-含CAD图纸】
收藏
资源目录
压缩包内文档预览:
编号:12131403
类型:共享资源
大小:1.79MB
格式:ZIP
上传时间:2018-12-25
上传人:小***
认证信息
个人认证
林**(实名认证)
福建
IP属地:福建
100
积分
- 关 键 词:
-
机械类毕业-含CAD图纸
垂直
潮流
水轮机
转子
结构设计
机械类
毕业
cad
图纸
- 资源描述:
-
垂直轴潮流能水轮机转子结构设计【机械类毕业-含CAD图纸】,机械类毕业-含CAD图纸,垂直,潮流,水轮机,转子,结构设计,机械类,毕业,cad,图纸
- 内容简介:
-
毕 业 设 计(论 文)任 务 书1本毕业设计(论文)课题应达到的目的: 本课题属于教师自主命题,来源于工程实践。目的:1、通过本课题的设计研究,考察学生四年来在校所学的专业知识水平及运用专业知识解决设计项目的创新能力;2、通过本课题的研究使学生系统的熟悉机械设计分析及掌握相关的设计手法。 3、通过本课题使学生熟练掌握制图方法、规范设计图纸画法以及提高使用设计软件解决应用问题的能力。 2本毕业设计(论文)课题任务的内容和要求(包括原始数据、技术要求、工作要求等): 内容:垂直轴潮流水轮机是近年来被广泛研究的一种海洋潮流能转换装置。本文对一种2300KW垂直轴潮流发电水轮机进行了机构设计,对水轮机进行了传动系统动力学、水动力学和结构动力学分析,验证了潮流发电水轮机实现潮流能转换的可行性。根据竖轴潮流发电水轮机的结构形式、流体动力学特性及水轮机发电技术特点,对垂直轴潮流发电水轮机进行了机构设计,建立了水轮机的三维实体模型。本课题技术要求:1、 垂直轴潮流发电水轮机结构设计与建模2、 发电机选择3、 叶轮结构设计4、 增速器设计5、 辅助部件设计 本课题研究的工作要求:1.前期的市场调研,调研目前国内外垂直轴潮流发电水轮。毕 业 设 计(论 文)任 务 书3对本毕业设计(论文)课题成果的要求包括图表、实物等硬件要求: 1、设计调研报告:前期的市场调研分析、图文结合、数据分析。2、设计图纸:设计机构的零件图和装配图并附上设计说明。3、完成毕业设计模型实物制作(暂定)与布展工作。4、按毕业设计要求完成全套设计方案及归档工作5、完成相关数据刻盘。4主要参考文献: 1 马勇,张亮,马良,陈展. 竖轴水轮机式潮流能发电装置开发现状与发展趋势J. 科技导报. 2012(12)2 李志川,张学伟,张亮,刘文东. 固定偏角垂直轴潮流能水轮机叶片安装位置试验研究J. 可再生能源. 2012(04)3 朱成章. 中外非化石能源的统计分析J. 低碳世界. 2011(02)4 张亮,罗庆杰,韩荣贵. 垂直轴潮流能水轮机叶片偏角优化J. 哈尔滨工业大学学报. 2011(S1)5 王树杰,李冬,赵龙武,鹿兰帅,王超. 柔性叶片水流发电模型实验研究J. 太阳能学报. 2010(03)6 吕新刚,乔方利,赵昌,夏长水. 海洋潮流能资源的数值估算以胶州湾口为例J. 太阳能学报. 2010(02)7 姜劲,张亮. 基于遗传算法的竖轴变攻角潮流能水轮机性能优化研究J. 哈尔滨工程大学学报. 2010(01)8 王树杰,李华军,李冬,鹿兰帅,单忠德,赵龙武. 潮流能柔性叶片水轮机水动力学特性分析J. 高技术通讯. 2009(11)9 李春祥,胡文悌,代泽兵,卞祥. 基于频域分析垂直轴风力发电机组旋转主轴的风致动力疲劳J. 振动与冲击. 2009(07)10 刘宏伟,李伟,林勇刚,马舜. 水平轴螺旋桨式海流能发电装置模型分析及试验研究J.11何祚庥. 实现可再生能源和化石能源的优势互补J.太原科技.2009(02)12 黄胜,张维新,李凤来. 蹼板式水流发电装置实验研究J. 哈尔滨工程大学学报. 2005(01)13 张亮,汪鲁兵,李凤来,张桂湘. 竖轴变攻角潮流发电水轮机性能预报流管模型研究J. 哈尔滨工程大学学报. 2004(03)14 邓隐北,熊雯. 海洋能的开发与利用J. 可再生能源. 2004(03)15 郑志南. 海洋潮流能的估算J. 海洋通报. 1987(04)太阳能学报. 2009(05)16 M. Kalantar,S.M. Mousavi G. Dynamic behavior of a stand-alone hybrid power generation system of wind turbine, microturbine, solar array and battery storageJ. Applied Energy . 2010 (10)17 W.M.J. Batten,A.S. Bahaj,A.F. Molland,J.R. Chaplin. Hydrodynamics of marine current turbinesJ. Renewable Energy . 2005 (2)毕 业 设 计(论 文)任 务 书5本毕业设计(论文)课题工作进度计划:15.11.20-15.12.2015.12.20-16.01.1516.01.15-16.03.1816.03.18-16.04.0816.04.08-16.04.3016.05.01-16.05.1016.05.10-16.05.15学生明确选题学生完成开题报告学生完成设计草图阶段,明确设计方案学生完善设计正稿, 撰写毕业设计论文初稿学生毕业设计完成阶段,提交毕业论文正稿,完成期中检查学生提交毕业设计论文,布置毕业设计展布展、毕业答辩准备所在专业审查意见:通过负责人: 2015 年 12 月23 日 毕 业 设 计(论文) 开 题 报 告 1结合毕业设计(论文)课题情况,根据所查阅的文献资料,每人撰写不少于1000字左右的文献综述: 能源紧缺和环境污染是人类面临的两大重要问题,大力发展清洁可再生能源成为世界能源实现可持续发展的重要战略措施。利用风能、洋流能发电,在全球范围内得到了高度重视。与水平轴式发电机相比,垂直轴式发电机的旋转轴与地面垂直,在制造、安装、维护和抗疲劳性能方面都有较大优势。传统的电机,一般只有一个定子和一个转子,无论是直流机、同步机还是异步机,都只有一个机械顿口。近年来,有人提出了双转子电机的概念,这种电机具有2个机械轴,可以实现2个机械轴能量的独立传递。双转子电机具有结构小巧、简单、噪音小、寿命长、效率高等优点,可以大大减小体积和重量,提高系统的效率和动态性能。因此这种利用垂直轴风力机、水轮机的新型双转子发电机有很好的研究价值与应用前景。现有的风力机按风轮旋转轴在空间的方向,分为水平轴风力机和垂直轴风力机。垂轴式的特点是旋转轴与地面垂直,风轮的旋转平面与风向平行。与水平轴式风力发电机相比,垂直轴风力发电机的齿轮箱放置在底部,重心低,稳定,维护方便,并且降低了成本水平轴风力机的叶片承受的是交变载荷,而垂直轴风力发电机的叶片只要承受拉应力,不易折断,寿命长;水平轴风机的叶片不可能是始终迎风,就引起了“对风损失”,而垂直轴风机能克服“对风损失”,能将风能利用率提高到 40% 以。 水轮发电机的转子是转换能量和传递转矩的主要部件,一般由主轴、转子支架、磁轭、磁极等部件组成。 主轴的作用是用来传递扭矩,应具有一定的强度和刚度。主轴一般由35号、40号、45号或20SiMn等钢整锻而成。 小容量水轮发电机一般采用整锻实心轴,也有的采用无缝钢管作为轴;大、中型容量的发电机采用整锻空心轴。磁极是提供励磁磁场的磁感应部件,由磁极铁芯,线圈,上、下托板,极身绝缘,阻尼绕组及钢垫板等零部件组成。磁极铁芯分实心和叠片两种结构。 中、小容量高转速水轮发电机的转子,常采用实心磁极结构,整体锻造或铸造而成。转速大于或等于750rmin的小型水轮发电机,常采用磁极铁芯连同转子的磁轭与主轴整体锻造加工。磁极固定方式通常采用螺钉、T尾和鸽尾结构。磁轭的作用是构成磁路并固定磁极。转子支架的作用是固定磁轭。对于定子铁芯外径小于325cm的中小容量的水轮发电机,磁轭可用铸钢或整圆的厚钢板制造,不需要专门的转子支架。对于定子铁芯外径较大的水轮发电机,磁轭通过转子支架和主轴连成一体。 磁轭的外缘加工有T尾、鹇尾槽或螺孔,用以固定磁极。 机架是立轴水轮发电机安置推力轴承、导轴承、制动器及水轮机受油器的支撑部件,是水轮发电机较为重要的结构件。机架由中心体和支臂组成,一般采用钢板焊接结构,中心体为圆盘形式,支臂大多为工字梁形式。机架按其所处的位置分为上、下机架,按承载性质分为负荷机架和非负荷机架 。推力轴承是应用液体润滑承载原理的机械结构部件,主要由轴承座及支承、轴瓦、镜板、推力头、油槽及冷却装置等部件组成。其主要作用是承受立轴水轮发电机组转动部分全部重量及水推力等负荷,并将这些负荷传给负荷机架。推力轴承支承结构方式主要有弹性垫支承式、刚性抗重螺栓支承式、弹性油箱支承和平衡块支承式四种。弹性垫支承式只用于小容量的立轴发电机;弹性油箱支承和平衡块支承式用于大中型发电机;中小型水轮发电机的推力轴承一般采用刚性抗重螺栓支承方式。 参考文献1 马勇,张亮,马良,陈展. 竖轴水轮机式潮流能发电装置开发现状与发展趋势J. 科技导报. 2012(12)2 李志川,张学伟,张亮,刘文东. 固定偏角垂直轴潮流能水轮机叶片安装位置试验研究J. 可再生能源. 2012(04)3 朱成章. 中外非化石能源的统计分析J. 低碳世界. 2011(02)4 张亮,罗庆杰,韩荣贵. 垂直轴潮流能水轮机叶片偏角优化J. 哈尔滨工业大学学报. 2011(S1)5 王树杰,李冬,赵龙武,鹿兰帅,王超. 柔性叶片水流发电模型实验研究J. 太阳能学报. 2010(03)6 吕新刚,乔方利,赵昌,夏长水. 海洋潮流能资源的数值估算以胶州湾口为例J. 太阳能学报. 2010(02)7 姜劲,张亮. 基于遗传算法的竖轴变攻角潮流能水轮机性能优化研究J. 哈尔滨工程大学学报. 2010(01)8 王树杰,李华军,李冬,鹿兰帅,单忠德,赵龙武. 潮流能柔性叶片水轮机水动力学特性分析J. 高技术通讯. 2009(11)9 李春祥,胡文悌,代泽兵,卞祥. 基于频域分析垂直轴风力发电机组旋转主轴的风致动力疲劳J. 振动与冲击. 2009(07)10 刘宏伟,李伟,林勇刚,马舜. 水平轴螺旋桨式海流能发电装置模型分析及试验研究J.11何祚庥. 实现可再生能源和化石能源的优势互补J.太原科技.2009(02)12 黄胜,张维新,李凤来. 蹼板式水流发电装置实验研究J. 哈尔滨工程大学学报. 2005(01)13 张亮,汪鲁兵,李凤来,张桂湘. 竖轴变攻角潮流发电水轮机性能预报流管模型研究J. 哈尔滨工程大学学报. 2004(03)14 邓隐北,熊雯. 海洋能的开发与利用J. 可再生能源. 2004(03)15 郑志南. 海洋潮流能的估算J. 海洋通报. 1987(04)太阳能学报. 2009(05)16 M. Kalantar,S.M. Mousavi G. Dynamic behavior of a stand-alone hybrid power generation system of wind turbine, microturbine, solar array and battery storageJ. Applied Energy . 2010 (10)17 W.M.J. Batten,A.S. Bahaj,A.F. Molland,J.R. Chaplin. Hydrodynamics of marine current turbinesJ. Renewable Energy . 2005 (2)毕 业 设 计(论文) 开 题 报 告 2本课题要研究或解决的问题和拟采用的研究手段(途径): 课题研究内容 本课题以垂直轴水轮机为对象,研究其转子结构并完成设计。 要求完成以后,能掌握制图方法、规范设计图纸画法以及提高使用设计软件解决应用问题的能力。 课题研究手段本课题主要是对垂直轴水轮机转子进行设计,通过调查研究以及参考文献学习等方式学会垂直轴潮流发电水轮机结构设计与建模并了解发电机选择、 叶轮结构设计、 增速器设计、 辅助部件设计。 毕 业 设 计(论文) 开 题 报 告 指导教师意见:1对“文献综述”的评语: 板坯结晶器内钢液流场/连铸中间包控流装置相关的国内外前人工作较好地进行了综合分析和归纳整理,并针对某一学者具体的研究工作进行了比较专门的、全面的、深入的和系统的描述与评价,语言简洁,层次清楚。达到了学校“文献综述要求”。该生通过大量搜集和查阅文献资料,对与板坯结晶器内钢液流场/连铸中间包控流装置相关的国内外前人工作较好地进行了综合分析和归纳整理,并针对某一学者具体的研究工作进行了比较专门的、全面的、深入的和系统的描述与评价,语言简洁,层次清楚。达到了学校“文献综述要求”该生通过大量搜集和查阅文献资料,对本课题相关的国内外前人工作较好地进行了综合分析和归纳整理,并针对某一学者具体的研究工作进行了比较专门的、全面的、深入的和系统的描述与评价,语言简洁,层次清楚。达到了学校“文献综述要求”。 2对本课题的深度、广度及工作量的意见和对设计(论文)结果的预测:预期可完成 3.是否同意开题: 同意 不同意 指导教师: 2016 年 03 月 06 日所在专业审查意见:同意 负责人: 2016 年 03 月 08 日 译文题目:hydraulic-turbines and hydro-electric power 水轮机和水力发电2016年 3月 3日hydraulic-turbines and hydro-electricThere has been practically no increase in the efficiency of hydraulic turbines since about 1925, when maximum efficiencies reached 93% or more. As far as maximum efficiency is concerned, the hydraulic turbine has about reached the practicable limit of development. Nevertheless, in recent years, there has been a rapid and marked increase in the physical size and horsepower capacity of individual units.In addition, there has been considerable research into the cause and prevention of cavitation, which allows the advantages of higher specific speeds to be obtained at higher heads than formerly were considered advisable. The net effect of this progress with larger units, higher specific speed, and simplification and improvements in design has been to retain for the hydraulic turbine the important place which it has long held at one of the most important prime movers. 1、types of hydraulic turbinesHydraulic turbines may be grouped in two general classes: the impulse type which utilizes the kinetic energy of a high-velocity jet which acts upon only a small part of the circumference at any instant, and the reaction type which develops power from the combined action of pressure and velocity of the water that completely fills the runner and water passages. The reaction group is divided into two general types: the Francis, sometimes called the reaction type, and the propeller type. The propeller class is also further subdivided into the fixed-blade propeller type, and the adjustable-blade type of which the Kaplan is representative.1.1 impulse wheelsWith the impulse wheel the potential energy of the water in the penstock is transformed into kinetic energy in a jet issuing from the orifice of a nozzle. This jet discharge freely into the atmosphere inside the wheel housing and strikes against the bowl-shaped buckets of the runner. At each revolution the bucket enters, passes through, and passes out of the jet, during which time it receives the full impact force of the jet. This produces a rapid hammer blow upon the bucket. At the same time the bucket is subjected to the centrifugal force tending to separate the bucket from its disk. On account of the stresses so produced and also the scouring effects of the water flowing over the working surface of the bowl, material of high quality of resistance against hydraulic wear and fatigue is required. Only for very low heads can cast iron be employed. Bronze and annealed cast steel are normally used.1.2 Francis runnersWith the Francis type the water enters from a casing or flume with a relatively low velocity, passes through guide vanes or gates located around the circumstance, and flows through the runner, from which it discharges into a draft tube sealed below the tail-water level. All the runner passages are completely filled with water, which acts upon the whole circumference of the runner. Only a portion of the power is derived from the dynamic action due to the velocity of the water, a large part of the power being obtained from the difference in pressure acting on the front and back of the runner buckets. The draft tube allows maximum utilization of the available head, both because of the suction created below the runner by the vertical column of water and because the outlet of he draft tube is larger than the throat just below the runner, thus utilizing a part of the kinetic energy of the water leaving the runner blades.1.3 propeller runnersnherently suitable for low-head developments, the propeller-type unit has effected marked economics within the range of head to which it is adapted. The higher speed of this type of turbine results in a lower-cost generator and somewhat smaller powerhouse substructure and superstructure. Propeller-type runners for low heads and small outputs are sometimes constructed of cast iron. For heads above 20 ft, they are made of cast steel, a much more reliable material. Large-diameter propellers may have individual blades fastened to the hub.1.4 adjustable-blade runnersThe adjustable-blade propeller type is a development from the fixed-blade propeller wheel. One of the best-known units of this type is the Kaplan unit, in which the blades may be rotated to the most efficient angle by a hydraulic servomotor. A cam on the governor is used to cause the blade angle to change with the gate position so that high efficiency is always obtained at almost any percentage of full load.By reason of its high efficiency at all gate openings, the adjustable-blade propeller-type unit is particularly applicable to low-head developments where conditions are such that the units must be operated at varying load and varying head. Capital cost and maintenance for such units are necessarily higher than for fixed-blade propeller-type units operated at the point of maximum efficiency.2、 thermal and hydro-power As stated earlier, the turbine blades can be made to run by the energy of fuels or flowing water. When fuel is used to produce steam for running the steam turbine, then the power generated is known as thermal power. The fuel which is to be used for generating steam may either be an ordinary fuel such as coal, fuel oil, etc., or atomic fuel or nuclear fuel. Coal is simply burnt to produce steam from water and is the simplest and oldest type of fuel. Diesel oil, etc. may also be used as fuels for producing steam. Atomic fuels such as uranium or thorium may also be used to produce steam. When conventional type of fuels such s coal, oil, etc. (called fossils ) is used to produce steam for running the turbines, the power house is generally called an Ordinary thermal power station or Thermal power station. But when atomic fuel is used to produce steam, the power station, which is essentially a thermal power station, is called an atomic power station or nuclear power station. In an ordinary thermal power station, steam is produced in a water boiler, while in the atomic power station; the boiler is replaced y a nuclear reactor and steam generator for raising steam. The electric power generated in both these cases is known as thermal power and the scheme is called thermal power scheme.But, when the energy of the flowing water is used to run the turbines, then the electricity generated is called hydroelectric power. This scheme is known as hydro scheme, and the power house is known as hydel power station or hydroelectric power station. In a hydro scheme, a certain quantity of water at a certain potential head is essentially made to flow through the turbines. The head causing flow runs the turbine blades, and thus producing electricity from the generator coupled to turbine. In this chapter, we are concerned with hydel scheme only.3、 classification of hydel plants Hydro-plants may be classified on the basis of hydraulic characteristics as follow: run-off river plants .storage plants.pumped storage plants.tidal plants. they are described below.Run-off river plants.These plants are those which utilize the minimum flow in a river having no appreciable pondage on its upstream side. A weir or a barrage is sometimes constructed across a river simply to raise and maintain the water level at a pre-determined level within narrow limits of fluctuations, either solely for the power plants or for some other purpose where the power plant may be incidental. Such a scheme is essentially a low head scheme and may be suitable only on a perennial river having sufficient dry weather flow of such a magnitude as to make the development worthwhile.Run-off river plants generally have a very limited storage capacity, and can use water only when it comes. This small storage capacity is provided for meeting the hourly fluctuations of load. When the available discharge at site is more than the demand (during off-peak hours ) the excess water is temporarily stored in the pond on the upstream side of the barrage, which is then utilized during the peak hours.he various examples of run-off the river pant are: Ganguwal and Kolta power houses located on Nangal Hydel Channel, Mohammad Pur and Pathri power houses on Ganga Canal and Sarda power house on Sarda Canal.The various stations constructed on irrigation channels at the sites of falls, also fall under this category of plants.(2) Storage plantsA storage plant is essentially having an upstream storage reservoir of sufficient size so as to permit, sufficient carryover storage from the monsoon season to the dry summer season, and thus to develop a firm flow substantially more than minimum natural flow. In this scheme, a dam is constructed across the river and the power house may be located at the foot of the dam such as in Bhakra, Hirakud, Rihand projects etc. the power house may sometimes be located much away from the dam (on the downstream side). In such a case, the power house is located at the end of tunnels which carry water from the reservoir. The tunnels are connected to the power house machines by means of pressure pen-stocks which may either be underground (as in Mainthon and Koyna projects) or may be kept exposed (as in Kundah project).When the power house is located near the dam, as is generally done in the low head installations ; it is known as concentrated fall hydroelectric development. But when the water is carried to the power house at a considerable distance from the dam through a canal, tunnel, or pen-stock; it is known as a divided fall development.(3) Pumped storage plants.A pumped storage plant generates power during peak hours, but during the off-peak hours, water is pumped back from the tail water pool to the headwater pool for future use. The pumps are run by some secondary power from some other plant in the system. The plant is thus primarily meant for assisting an existing thermal plant or some other hydel plant.During peak hours, the water flows from the reservoir to the turbine and electricity is generated. During off-peak hours, the excess power is available from some other plant, and is utilized for pumping water from the tail pool to the head pool, this minor plant thus supplements the power of another major plant. In such a scheme, the same water is utilized again and again and no water is wasted.For heads varying between 15m to 90m, reservoir pump turbines have been devised, which can function both as a turbine as well as a pump. Such reversible turbines can work at relatively high efficiencies and can help in reducing the cost of such a plant. Similarly, the same electrical machine can be used both as a generator as well as a motor by reversing the poles. The provision of such a scheme helps considerably in improving the load factor of the power system.(4) Tidal plantsTidal plants for generation of electric power are the recent and modern advancements, and essentially work on the principle that there is a rise in seawater during high tide period and a fall during the low ebb period. The water rises and falls twice a day; each fall cycle occupying about 12 hours and 25 minutes. The advantage of this rise and fall of water is taken in a tidal plant. In other words, the tidal range, i.e. the difference between high and low tide levels is utilized to generate power. This is accomplished by constructing a basin separated from the ocean by a partition wall and installing turbines in opening through this wall.Water passes from the ocean to the basin during high tides, and thus running the turbines and generating electric power. During low tide,the water from the basin runs back to ocean, which can also be utilized to generate electric power, provided special turbines which can generate power for either direction of flow are installed. Such plants are useful at places where tidal range is high. Rance power station in France is an example of this type of power station. The tidal range at this place is of the order of 11 meters. This power house contains 9 units of 38,000 kW. Hydro-plants or hydroelectric schemes may be classified on the basis of operating head on turbines as follows: low head scheme (head60m). They are described below:(1) Low head scheme.A low head scheme is one which uses water head of less than 15 meters or so. A run off river plant is essentially a low head scheme, a weir or a barrage is constructed to raise the water level, and the power house is constructed either in continuation with the barrage or at some distance downstream of the barrage, where water is taken to the power house through an intake canal.(2) Medium head schemeA medium head scheme is one which used water head varying between 15 to 60 meters or so. This scheme is thus essentially a dam reservoir scheme, although the dam height is mediocre. This scheme is having features somewhere between low had scheme and high head scheme.(3) High head scheme.A high head scheme is one which uses water head of more than 60m or so. A dam of sufficient height is, therefore, required to be constructed, so as to store water on the upstream side and to utilize this water throughout the year. High head schemes up to heights of 1,800 meters have been developed. The common examples of such a scheme are: Bhakra dam in (Punjab), Rihand dam in (U.P.), and Hoover dam in (U.S.A), etc.The naturally available high falls can also be developed for generating electric power. The common examples of such power developments are: Jog Falls in India, and Niagara Falls in U.S.A.水轮机和水力发电从1925年开始,水轮机的最高效率达到93%或稍微高一点就没有再提高了。就最大效率而言,水轮机的对水能的利用率已经达到了实际发展的极限了。然而,在最近几年里,水轮机的大小和单机容量却增长的很快。另外,人们还对引起空蚀的原因以及怎样预防空蚀做了很多的研究,这些研究使得我们能够在高于以前认为的合适水头下获得更高的比转速。更大的机组,更高的比转速,以及水轮机的设计上的简化和改进,这几个方面的进步使得水轮机一直以来在作为原动力之一拥有很重要的地位。1、水轮机的类型水轮机可以分为两大类:冲击式水轮机利用高速水流冲击水轮机的一小部分时产生的动能;反击式水轮机利用充满转轮和过水道的水流所拥有的水的压力和流速两者相结合来获得动力。反击式系列又分成两种通用的型式:弗朗西斯式(有时称作反击式)以及旋桨式。旋桨式又进一步再分为定轮叶式水轮机和以卡普兰式代表的转叶式水轮机。1.1冲击式水轮机在冲击式水轮机上,压力钢管中的水从喷嘴孔口中射出,这时水的的势能转换成动能。射流自由地射入水轮室内的空气中,撞击在转轮的碗状戽斗上。戽斗每旋转一周进入射流、经过并从射流转出一次。在这段时间内戽斗承受着射流的全部冲击力。这种冲击力产生一个高速锤击冲打在戽斗上。与此同时,戽斗受到离心力的作用而有脱离它的座盘的趋势,由此而产生的应力以及水流在戽斗的碗状工作面上的冲刷作用都很大,因而需要选用能抵御水力磨损和疲劳的高质量材料,一般都采用青铜和韧化铸钢,只有水头很低时才能用铸铁。1.2弗朗西斯式转轮就弗朗西斯式水轮机来说,来自蜗壳或水槽内的流速较低的水,通过位于转轮周围的导叶或一些闸门,然后流经转轮,并从转轮泄入安置在尾水位以下而不与大气相通的尾水管内。由于水充满所有的水道并作用在转轮的整个周围,因此,仅有一小部分动力来自水的流速所引起的动力作用,而大部分动力则都通过作用在转轮叶片前后工作面上的压力差取得。尾水管可以使能利用的水头得到充分的利用,这一方面是由于转轮下面垂直水柱所产生的吸出作用,另一方面是由于尾水管的出口面积大于紧接转轮下喉管的面积,从而使水流离开转轮叶片时的一部分动能得以利用。1.3旋桨式转轮旋桨式机组最适用于低水头电站,在它适用的水头范围内,已产生了显著的经济效果。这种水轮机的转速比较高,以致使发电机的价格较低,并使发电厂房的水下结构和水上结构的尺寸都比较小。低水头、小功率的旋桨式转轮,有时用铸铁来制造。水头高于20英寸时,都用一种更为可靠的材料铸钢来制造。大直径的螺旋桨可用单个叶片固定在轮毂上制成。1.4转叶式水轮机转叶旋桨式水轮机是从定轮叶旋桨式水轮机发展而成的。卡普兰式水轮机是这类水轮机中为人们最为熟悉的一种。它的叶片可由液压伺服器调整到效率最大的角度。利用伺服器上的凸轮能使叶片的角度随阀门的开启位置而变化,从而在所有各种满负载百分率情况下都能保持高效率。由于转叶旋桨式水轮机组在闸门各种开度情况下效率都高,因此,它特别适用于那些必须在变负载和变水头条件下运行的低水头电站上。当然,这种机组的投资费用和维护费用要高于只能在一个最大效率点上运行的定轮叶
- 温馨提示:
1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
2: 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
3.本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

人人文库网所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。