全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
分析法的应用举例立体几何的证明是很多同学感到头疼的问题我们做题时,若能根据题目的特点选用合理的证明方法,由常常能使问题较容易的得以解决分析法是立几证明过程中经常用到的方法,即:首先从结论入手,用分析的方法,通过等价推理,寻求最终解题所需要的条件;然后再在分析的基础上,用综合法把证明过程条理清楚地表现出来下面我们用分析法来分析两道立几证明题高*考*资+源+网例1 如图1,在四面体中,求证:平面平面分析:要证面面垂直需通过线面垂直来实现,可是哪一条直线是我们所需要的与平面垂直的直线呢?我们假设两平面垂直已经知道,则根据两平面垂直的性质定理,在平面内作,则平面,所以即为我们所要寻找的直线要证明平面,除了已知的之外,还需要在平面内找一条直线与垂直,哪一条呢?假设已知知道平面,则与平面内的任意直线均垂直,即必有,但这两个垂直的证明较难入手,还有其他的直线吗?连结呢?假设已经知道平面,则必有通过计算可得到,原题得证证明:设的中点为,连结,因为,所以;设,因为,所以,所以,即,又已知,所以平面,又平面,所以平面平面例2 如图,在长方体中,证明:平面平面分析:要证明两平面平行,需在一平面内寻找两条相交直线与另一平面平行假设两平面平行已知,则一个平面内的任意直线均与另一个平面平行,所以有均与平面平行,选择任意两条均可,不妨选择要想证明与平面平行,需在平面内寻找两条直线分别与平行,假设与平面平行已知,则根据线面平行的性质定理,过的平面与平面相交所得的交线与平行;过的平面与平面相交所得的交线与平行即为所要寻找的直线从而易知分别与平行,原题得证证明:因为为长方体,所以有,即四边形为平行四边形,从而有,又已知平面平面,进而有平面;同理有,从而有平面;又已知,所以有平面平面从上面的两例可以看出,分析法的基本思路是:从“未知”看“需知”,逐步靠拢“已知”,其逐步推理,实际上是要寻找它的充分条件同学们可以在学
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年公务员省考之行测题库检测试卷A卷附答案
- 商场门店承包经营合同协议书范本模板5篇
- 儿科护士长个人述职报告范文四篇
- 长沙青竹湖湘一2025年八上数学第三次月考试题及答案
- 度继续教育公需科目考试试题及答案(满分版)
- 战略管理与伦理试题及答案
- 执业药师中药专业知识二真题模拟试卷
- 推断题压轴突破训练∶培优 易错 难题篇附详细答案
- 幼儿园期末安全主题家长会课件
- 人之初教学设计
- 水产养殖技术模式发展
- 韭菜栽培技术课件
- 美导下店标准化流程
- 生产保密配方管理办法
- 草莓授粉培训课件图片
- 建筑企业安全生产目标责任书范本
- 阴式手术的围手术期护理
- 书法机构印章管理制度
- 物业管理居间合同协议书
- 中医基础阴阳学说课件
- 冷链设施设备验证与校准培训课件
评论
0/150
提交评论