八年级数学课件勾股定理_第1页
八年级数学课件勾股定理_第2页
八年级数学课件勾股定理_第3页
八年级数学课件勾股定理_第4页
八年级数学课件勾股定理_第5页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

相传2500年前,一次毕达哥拉斯去朋 友家作客,发现朋友家用砖铺成的地面反 映直角三角形三边的某种数量关系,同学 们,我们也来观察下面的图案,看看你能 发现什么? 情境问题: (1)观察图1-1 正方形A中含有 个 小方格,即A的面积是 个单位面积。 正方形C的面积是 个单位面积。 16 16 9 25 你是怎样得到正方形c 的面积? A B C 图1-1 (图中每个小方格代表一个单位面积) 看 一 看 正方形B中含有 个 小方格,即B的面积是 个单位面积。 9 (2)在图1-2中,正方形 A,B,C中各含有多少 个小方格?它们的面积 各是多少? (3)你能发现图1-1中 三个正方形A,B,C的 面积之间有什么关系吗 ?图1-2中呢? SA+SB=SC 即:两条直角边上的正方形面积之和等于 斜边上的正方形的面积 A B C 图1-1 A B C 图1-2 (3)分别以5厘米、12厘米为直角边作出一个直角 三角形,并测量斜边的长度。(2)中的规律对这 个三角形仍然成立吗? (1)你能用三角 形的边长表示正方 形的面积吗? (2)你能发现直 角三角形三边长度 之间存在什么关系 吗?与同伴进行交 流。 直角三角形两直角边的 平方和等于斜边的平方 A B C 图1-1 A B C 图1-2 18.1 勾 股 定 理 勾股定理(gou-gu theorem) 如果直角三角形两直角边分别为a、b,斜 边为c,那么 直角三角形两直角边的平方和等于斜边的平方。 a b c 即 : 勾股定理的证明 勾股定理是几何中 一个非常重要的定 理,自古以来人们 进行了大量的长期 的研究,目前世界 上可查到的证明方 法有三百多种。 证明一 证明二 其它证明 A B C D c b a a + b 22 c2= 证一证 ba b-a 证明一 赵爽的证明 证明二 a a a a b b b b c c c c a b c c b a a b b b b aa a 美国第二十任总统伽菲尔德的证法在数学史上被传为佳话 人们为了纪念他对勾股定理直观、简捷、易懂、明了的证明, 就把这一证法称为“总统”证法。 有趣的总统证法 两千多年前,古希腊有个哥拉 斯学派,他们首先发现了勾股定理,因此 在国外人们通常称勾股定理为毕达哥拉斯 年希腊曾经发行了一枚纪念票。 定理。为了纪念毕达哥拉斯学派,1955 勾勾 股股 世世 界界 国家之一。早在三千多年前, 国家之一。早在三千多年前, 国家之一。早在三千多年前, 国家之一。早在三千多年前, 国家之一。早在三千多年前, 国家之一。早在三千多年前, 国家之一。早在三千多年前, 国家之一。早在三千多年前 两千多年前,古希腊有个毕达哥拉斯 学派,他们首先发现了勾股定理,因此在 国外人们通常称勾股定理为毕达哥拉斯定 理。为了纪念毕达哥拉斯学派,1955年 希腊曾经发行了一枚纪念邮票。 我国是最早了解勾股定理的 国家之一。早在三千多年前,周 朝数学家商高就提出,将一根直 尺折成一个直角,如果勾等于三 ,股等于四,那么弦就等于五, 即“勾三、股四、弦五”,它被记 载于我国古代著名的数学著作 周髀算经中。 在中国古代,人们把弯曲成直角的手臂的上半部分称为 “勾“,下半部分称为“股“。我国古代学者把直角三角形 较短的直角边称为“勾”,较长的直角边称为“股”, 斜边称为“弦”. 勾 股 勾股定理的历史 我国古代称直角三角形中短的一条直角边 为勾,长的一条直角边为股,斜边为弦, 所以之一定理通常称为勾股弦定理,简称 勾股定理。 在中叙述了西周开国时期( 约公元前一千一百多年)周公和商高的对 话,商高说:“股折矩以勾广三,股修四, 经隅五。”说明已认识到这一定理的特例, 所以又叫商高定理。 勾股定理的历史 我国有记载的最早勾股定理的证明,是三 国时,我国古代数学家赵爽在他所著的 勾股圆方图注中,用四个全等的直角三 角形拼成一个中空的正方形来证明的。 每个直角三角形的面 积叫朱实,中间的正 方形面积叫黄实,大 正方形面积叫弦实, 这个图也叫弦图。 资料:赵爽 赵爽是三国时期东吴的数学家(公元 三世纪初),曾注周髀算经。 他所作的周髀算经注中有一篇 勾股圆方图注全文五百余字,并附有六 幅插图,这篇注文简洁的总结了东汉时期 勾股算术的重要成果,最早给出并证明了 有关勾股弦三边及其和、差关系的二十多 个命题,它的证明主要是依据几何图形面 积的换算关系。 勾股定理的历史 在西方,这个定理叫“毕达哥拉斯定理”,一 般认为是古希腊数学家毕达哥拉斯于公元 前五百五十年左右发现并证明的。相传, 毕达哥拉斯发现这一定理时,曾宰牛百头 ,广设盛宴,表示庆贺,对这个定理的重 视可想而知。 结论变形 a b c c2 = a2 + b2 直角三角形两直角边的平方和等于斜边的平方。 大于能 y=0 新新 知知 巩巩 固固 约71dm 约57m y=0 如图,因受台风影响,一棵树在离地面4米处断裂,树的 顶部落在离树跟底部3米处,这棵树折断前有多高? 应用知识回归生活 4米 3米 1 1这节课你学到了什么知识?这节课你学

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论