改进具有功率因数校正方案降压型变换器的控制策略.pdf

外文翻译中英文-改进具有功率因数校正方案降压型变换器的控制策略

收藏

压缩包内文档预览:
预览图 预览图 预览图 预览图 预览图 预览图 预览图
编号:12828310    类型:共享资源    大小:1.73MB    格式:ZIP    上传时间:2019-01-07 上传人:机****料 IP属地:河南
12
积分
关 键 词:
外文 翻译 中英文 改进 改良 具有 拥有 具备 功率 因数 校正 校订 方案 降压 变换器 控制 节制 策略
资源描述:
外文翻译中英文-改进具有功率因数校正方案降压型变换器的控制策略,外文,翻译,中英文,改进,改良,具有,拥有,具备,功率,因数,校正,校订,方案,降压,变换器,控制,节制,策略
内容简介:
中文7900字改进具有功率因数校正方案降压型变换器的控制策略冈田克Hirachi*,Touru岩出*,孝敬的Mii*,荣信Yasutsune*和Mutsuo中冈 研究与发展部,第二槻厂,汤浅公司2-3-21 Kosobe町高槻城大阪,569,日本 电气和电子工程系,技术研究生院,山口大学 2557常盘岱宇部,山口,755,日本降压型高功率因数PWM变换器拓扑结构不仅能够充分有效消除输入电流的谐波,而且其具有高效率,缺乏浪涌电流,能够获得较低的直流输出电压,具有短路保护等优点。对通讯能量系统而言,降压型高功率因数转换器的固有性能成为有吸引力的电源供应器能源系统。另一方面,因为这种类型的转换器必须采用高电感值的电抗器,这些都会增加设备的尺寸和重量,进而阻碍其广泛使用。本文提出了一种降压型高功率因数PWM转换器的一种新的控制策略,它可以缩小电抗器的体积和重量,也能消除了输出电压中的脉动分量。本文对它的工作原理和仿真结果进行了描述。引言高功率因数转换器可分为三个类型:降压型,升压型,降压升压型拓扑结构。图1显示了这三种类型电路拓扑的非隔离电路的典型配置。当功率开关管T1处于导通时,这三种电路中电抗器L1存储能量,而但T1关断时,L1中存储的能量转移到电容C1。适当的控制电抗器的输入电流的波形使之成为正弦波且与电网输入电压Vin同相位。在升压型和降压升压型转换器的情况下,当功率开关管T1处于导通时,交流输入电压直接给电抗器L1提供能量,L1上的电压即为输入电压。但是在降压型转换器中,电抗器L1上的电压为交流输入电压绝对值与直流输出电压的差值。 因此,在升压型和降压升压型转换器中可以一直在电抗器L1中积累能量,而在降压型变换器中只有当交流输入电压的绝对值低于输出电压是不可能的在电抗器L1中积累能量的。由于这个原因,降压型使我们有必要积累足够的能量在电抗器中,以便在输入电压的绝对值很低提供所需要的能量。这意味着降压型相对于升压型或降压升压型需要更大的电感值,而较大的电感会增加物理尺寸和电抗器的重量。这就需要在降压型高功率因数转换器中尽可能减小反应电抗器的电感值,但是减小电感将增大反应电抗器的电流纹波,从而导致交流输入电流的大量失真。为了解决这个问题,采用脉冲面积调制的控制策略,即使当反应电抗器中包含一个很大的纹波电流时,输入电流中也几乎没有任何失真。图1典型的非隔离的三高功率因数整流器的电路配置类型降压型高功率因数整流器的运行原理图2显示了降压型高功率因数变换器的电路结构。反应电抗器Lout有足够的大小,电抗器Lout上的电流I保持了连续模式。当T1处于导通时,电流的流通路径为:输入电压Vin D1T1LoutC1D4输入电压Vin,输入电流I(Vin)等于电抗器上的电流I(Lout)。当T1处于关断时,电抗器上的电流通过以下路径:LoutC1DfLout,这使得输入电流I(Vin)为零。图2主电路配置降压型高功率因数变换器因此,当Lout的值足够大,其电流纹波小的可以忽略不计,变换器的控制电路如图3所示,将电网的正弦波电压波形与锯齿载波进行比较。图3常规控制电路配置通过这一过程,对开关装置采用PWM控制策略,而控制输入电流以使才能成为一个完美的正弦波。图4给出了仿真的波形。与输入电压同相位的正弦波波形V(20),与锯齿波V(IO)比较,来产生开关器件T1的驱动信号。产生的输入电流I(Vin)的波形如图4所示。图5显示了输入电流I(Vin)的傅立叶分析结果的波形。所有的谐波成分都在2以下。图4 电感器Lout无纹波电流的仿真分析图5无纹波电流的电感器Lout输入电流的傅立叶分析为了使PWM控制更容易理解,仿真中假设开关管的工作频率为2KHZ。在实际电路中,工作频率设定在高几十千赫兹的水平,而输入电流I(Vin)中的高频率分量中可以很容易通过一个小滤波器滤过。但是,当纹波电流电抗器上的电流I(Lout)不能忽略不计时,相对于纹波电流的大小来说,采用图3的控制策略带来了输入电流波形失真。图6给出了当电抗器的纹波电流I(Lout)不能忽略不计时仿真结果。在这种情况下,反应电抗器的电流I(Lout)包含峰峰值为28A的纹波电流,因此,输入电流I(Vin)的波形如图6所示。图7显示了输入电流I(Vin)傅里叶波形分析的结果。有一个约13.5的三次谐波分量,仿真参数设置如表1。图6电抗器Lout的大脉动仿真分析图7带有大纹波电流电抗器输入电流的傅立叶分析表1 仿真配置脉冲面积调制控制电路的实现与控制策略当脉冲宽度依据反应器的电流瞬时值做适当的控制时,即使反应电抗器的电流I(Lout)中含有一个很大波纹,也能形成一个正弦波的输入电流。通过开关装置调节电流脉冲面积的调制方法是最合适的控制策略。已经提出了在降压升压型电路中采用调制脉冲面积调制方法1。但在电抗器工作频率时高,在降压型转换器电路采用脉冲面积调制似乎比降压升压更加显示出优势。图8显示了包含脉冲面积调制控制电路的实现。电抗器电流I(Lout)是由分流器SH1检测的,其电压V(SH1)被放大后送入积分电路。这种积分电路在固定的时间间隔复位,它的输出是锯齿波V(IO),它与电抗器I(Lout)成正比。此锯齿波与参考电压V(20)进行比较,V(20)是由输入电压V1经过处理后得到的,从而获得驱动开关器件T1的PWM波。该电路将直流输出电压Vour和参考电压Vref进行了比较,并使用乘数器来控制V(20)的幅值,因此能够控制输出电压为一个恒定的值。图8控制电路的配置图9说明了应用于控制电路中脉冲面积调制的原理。由于应用在调制电路中的锯齿波V(10)是由电抗器(Lout)的电流通过积分形成的,其正比于电抗器电流I(Lout),当电抗器电流逐渐增加,电流形成一个按图9所示按阶梯逐渐增加的锯齿波。假设参考电压V(20)具有恒定值如图9所示,T1的占空比是逐渐减小。因此,输入电流波形I(Vin)成为的峰值逐渐增大而脉冲宽度逐渐减小的方波,如图9所示。图9中划斜线的脉冲的峰值是打点脉冲的两倍,为了达到等面积原则,它的脉冲宽度只有一半。如果参考电压波形是常数,这些脉冲的面积将不会改变,但如果参考电压波形增加会减小则脉冲面积等比例的增加或减少。脉冲的面积等于输入电流I(Vin)的瞬时值。因此,如果参考电压波形变成如图8所显示的正弦波,输入电流将会变成正弦波。图9脉冲面积调制原理使用脉冲面积调制的仿真结果 图10 显示了采用脉冲面积调制的一些仿真结果,仿真参数上的设置如表1所示。很明显,锯齿波的频率时与反应电抗器的电流I(Lout)成比例的定值。图10脉冲调制方案下的控制电路波形 图11显示了采用脉冲面积调制的另外一个仿真结果。每个输入电流I(Vin)的脉冲峰值是等于反应电抗器的电流I(Lout)。为了使每个脉冲的面积可以按照交流输入电压V(2,1)而改变,输入电流I(Vin)的脉冲宽度得到控制。图11脉冲调制方案下主电路波形图12显示了图11中输入电流I(Vin)傅里叶分析的结果。谐波成分的抑制远远高于图7,图7中没有采用脉冲面积调制。正如图4和图6一样,在图10和图11中工作频率也设置为在2 kHz,使操作更容易理解。在实际电路,工作频率设定为几万赫兹,输入电流(Vin)中的高频分量通过一个小滤波器很容易滤掉。图12脉冲调制方案下输入电流的傅立叶分析图13 测量电感器的电流和输入电压波形推荐电路的实验结果图13和图14显示基于脉冲面积调制策略的小容量变换器的仿真波形。如图13所示,虽然反应电抗器的电流中有很大的纹波成分,但输入电流几乎没有失真,在图14所示。图14 测量输入电压和输入电流波形 消除纹波电压控制电路结构和控制策略在电信能源电力供应系统中,防止通信设备的噪声能有效的抑制直流输出电压的纹波到足够小的值。但在单输入高功率因数有源转换器,通常电抗器电流中包含大量的电流纹波,其频率是电网交流公频的两倍,基于这个原因,带有两倍公频的电压纹波也会出现在输出电压中。降压型高功率因数转换器的直流输出电压中也有大量的电压纹波。图15显示了根据表1的条件设置的反应电抗器电流电流I(Lout)和直流输出电压V(7)的仿真结果。反应器的电流I(Lout)纹波电流在100赫兹时,峰峰值为28A,直流输出电压V(7)中包含峰峰值为0.74Vd的纹波电压。图16显示了最新提出的带有辅助抑制开关电路的降压型高功率因数转换器的电路配置,能有效的抑制输出电压纹波。辅助开关T2与二极管D5串联之后再与反应电抗器Lout并联。当T2是导通时,反应电抗器的电流通过T2和D5,当T2关断时,反应电抗器的电流供应给C1。这意味着按照开关装置T1和T2的工作状态分,图16有如表2中所列出的三个工作模式,但是两个开关装置同时导通时必须除去。图15输出电压的纹波波形图16新型降压型高功率因数变流器的主电路与辅助电路配置表2 三种运行模式如上所述,当T1的占空比按照脉冲面积调制来确定时,输入电流形成一个正弦波。如果T2的占空比也按照脉冲面积调制来确定,一旦脉冲宽度确定后,直流输出电压中纹波电压也被滤掉了。图17显示了带有辅助开关T2的控制电路的电路配置。T1的栅极驱动信号可以按照图8的方式产生,T2的栅极驱动信号则是要通过比较通过积分电路后的输出电压V(10)和控制电压V(30)而产生。当V(10)比V(30)大时,辅助开关T2关闭并停止向C1传输能量。当V(10)比V(30)小时,辅助开关关断,电源直接给C1供给能量。由于控制电压V(30)是个恒定的值,供给C1的能量具有恒定的值,直流输出电压Vout中没有电压纹波。图17带有辅助开关T2的电路结构带辅助开关电路仿真结果图18显示了控制电路的仿真波形。正如图10所示,T1的栅极驱动信号是通过比较锯齿波V(10)和正弦波V(20)而产生的,它具有与输入电压相同的相位。T2栅极驱动信号可以通过比较锯齿波电压V(10)和直流电压V(30)产生的。直流电压V(30)设置的尽可能高,没有超过V(10)电压的峰值。图18带辅助开关的控制电路的波形图19显示了T1的电流波形I(SW)和T2的电流波形I(SAUX)的仿真结果。当电流峰值高,I(SAUX)被控制有较宽的脉冲宽度,另一方面,但当电流峰值低时,脉冲宽度减少。在这种控制下,传输到直流输出端的能量保持不变。图20显示反应电抗器电流波形I(Lout)和直流输出电压波形V(7)的仿真结果。虽然电抗器电流钟包含一个峰峰值为21A的脉动分量,但直流输出电压几乎没有任何低频的纹波电压。图19主开关和辅助开关波形图20 带有辅助开关的输出电压波形直流输出电压中含有2千赫兹的纹波分量的仿真结果如图20所示,而因为实际电路中工作频率在几十千赫,通过电容C1,在工作频率处的纹波分量可完全消除了。仿真时的参数设置如表1,在仿真中采用的PSPICE电路文件见附录。应用高频电路拓扑结构该电路配置如图16所示,是最简单的降压型高功率因数转换电路,但全桥型电路配置图21所示,可以选择大容量的电源供能。虽然电信能源系统中通常需要在输入与输出侧进行隔离,如果采用图22,23的电路配置,输入和输出通过一高频变压器实现隔离。图21适用于大电源容量的新拓扑.图22全桥电路的高频环节图23单端电路高频环节总结即使在降压型高功率电流因数变流器中有很大的纹波电流分量,通过采用提出的控制策略,也能产生一个无失真的输入电流波形。最近提出的带辅助开关的电路能对直流输出电压的纹波得到有效的控制,而这在传统降压型高功率因数变换器中是不可能实现的。采用这些控制方法能使我们的输入电流为正弦波,且能在电感值相对较小的情况下抑制输出电压的纹波。这使我们能够使降压型高功率因子转换器体积小,重量轻。在将来,这种类型的原型转换器将在可行的电路实验板上得到研究和测试。参考文献1学茂木,西田和阿前田华,“单相降压/升压输出电压纹波PFC变换器,自由运作“,1994年国民大会独立外部评价记录日本产业应用协会,169- 172页2光Hirachi,吨岩出和K.芝山,“完善控制策略降压型高功率因数变流器“,1995年国民大会记录IEEJapan,No.719附录该电路文件中的高功率因数辅助电路的PWM转换器的电路如图16所示。 STEPD- C2的降压型PFC变换器*STEPD-CZ. CIJ*K. HlRACHl *.TRAN 2US lOOmS 80mS IOUS UIC FOUR 50Hz 20 I (Rin) . *Main Circuit* Vin 2 1 SIN(0 141 50 0 0 0) Rin 2 4 0.01 D1 4 5 DMOD D2 0 4 DMOD D3 1 5 DMOD D4 0 1 DMOD RD1 4 5 lMEGOHM RD2 0 4 lMEGOHM RD3 1 5 lMEGOHY RD4 0 1 lMEGOHM *Sine Wave Reference *D301 2 301 DMOD D302 300 2 DMOD D303 1 301 DMOD D304 300 1 DMOD RD301 2 301 lMEGOHM RD302 300 2 lMEGOHMRD303 1 301 lMEGOHMRD304 300 1 lMEGOHMR301 301 300 lMEGE301 20 0 301 300 0.062 *Main Switching Device*sw 5 62 20 10 SMOD RSW 62 6 Im Cab1 5 63 0,lufRab1 63 62 10Df 0 6 DMODRDf 0 6 1MEG RLout 6 61 lmOHM Lout 61 72 7mH IC=65A Cout 7 0 .56000UF IC=55.2V RL 7 0 1.104 * PWM Signal* GI 0 101 6 61 10 Ct 101 0 5uF RCt 101 0 IMEG R3 101 102 lm S1 102 0 201 0 SMOD Vp 201 0 PULSE(-l 10 0 1u 1u 1u 500u)RVP 201 0 lMEG RIO1 101 10 400K R102 10 0 I00K *Auxiliary Switch *SAUX 71 6 10 30 SMODDAUX 72 71 DMOD RLOAD 72 7 1mY1 30 0 DC 9.33vRY1 30 0 1MEG.MODEL DMOD D().MODEL SMOD VSWITCH(Ron=O. 05 Roff=1000 Von=0.4V Voff=0v).OPT ITL4=400 . OPT RELTOL=0 1 . PROBE .END一种新的软开关双向降压或升压型DC- DC转换器董磊,2,王学萍1,刘震1,辽Xiaozhong1,2 自动控制教研室,北京理工大学,中国研究院2Key实验室,复杂系统智能控制与决策,教育部,中国电子邮箱:163.com pemc.bit摘要本文提出了一种新的软开关双向降压或升压型DC - DC转换器。相对于传统的双向DC- DC转换器,新的拓扑结构用作降压转换器或升压转换器能用在双向混合电动汽车的案件(HEV)和Electrosorb技术(EST)等,新的转换器有如下优点:简单的电路和控制策略,没有任何附加设备的软开关实现,高功率密度,成本低,重量轻,可靠性高。操作原理,理论分析和设计指引都在下面的文章中提及。仿真和实验结果也已被证实。 导言 近年来发展迅速的超电容器已用于混合动力汽车和EST。对于混合动力汽车的应用,双向DC- DC转换器已成为发电机和超大电容之间平衡的一个重要设备。对于加速模式,在DC - DC转换器提升超电容的电压(比直流母线电压低)到直流母线电压。当超电容直流电压比总线电压高时,DC - DC转换器作为降压型使用。另一方面,对于再生制动模式,在DC - DC转换器作为降压转换器或升压型转换器保持直流母线电压不变,而将能源流向超电容器。 EST的应用类似混合动力车。为了提高效率,降低了尺寸,软开关技术已广泛应用于DC - DC转换器。然而,大多数现有的软交换的DC - DC转换器都是低功率或单向的,而且往往是难以满足上述应用的要求1。双路全桥或带有软开关的双半桥双向DC - DC转换器转换器视为一个这些应用中的最佳选择26。 在这些转换器,当电源流向一个方向,转换器工作在降压模式,流向另一方面时,则转换器工作在升压模式。本文提出了一种新型的软开关双向降压或升压型DC - DC转换器。在所提出的电路中,新转换器具有非常简单的拓扑结构和最少的装置。与此同时,无论能量朝哪个方向流,该电路拓扑都可以作为降压转换器或升压转换器。所有这些特点电源转换器具有高效,容易控制,重量轻,压缩包装和成本低的优点。一种双向降压/升压转换器的原型已经建成并试验成功。该实验对转换器的稳态运行进行了理论分析和并给出了仿真结果。 二.功率级描述和操作原理提出的双向降压或升压型DC - DC在EST中的应用如图1所示。该转换器是一个对称电路由一个电感L和两个桥臂组成。当能量从一侧流向另一侧时,电路工作在降压模式或升压模式。图1 软开关双向降压/升压变换器在转换器的两边有2个电压源V1和V2代表了超电容器,电池,或其他电源。因为转换器是一个对称电路,可以进行单一方向的分析。例如,当能量从V1流向V2。如图2(a)所示,当V1V2时。开关S4是一直关断的。开关S2和S3也是关断的。当在低电压中,开关S2和S3可作为同步整流开关。开关S1作为斩波开关。当开关S1是开通时,开关S2关断,而S3是开通的。电流从V1经过S1,L,S3流到V2,电感L2 被充电。当开关S1关断时,开关S2开通时,而S3是开通的。电感向外放电,电流从S2,L,S3,流向V2。如图2(b)所示当V1Lr1,并LLR2。输出滤波器L,Cr4,Lr2,C2和负载可视为恒流源。半导体开关是理想的,也就是说,没有电压下降在开通状态,无渗漏电流在 关闭状态,在开通和关断时都没有时间延迟。 元件都是理想的。 图5中t0到t4描述了在降压模式下,开关周期各个阶段的不同的状态。在一个开关周期的开始,t=t0,S1接通。阶段1)电感充电阶段t0,t1(图5)输入电流iLr1,线性升高,由下面的方程决定:这个阶段的持续时间,t01(=t1-t0),可以求出:阶段2)谐振阶段t1,t2(图5):在t1时刻,Lr1和Cr2开始谐振。Lr1的电流跟Cr2的电压分别为:而 是特性阻抗。 是共振频率。这个阶段的持续时间,t12(=t2-t1),可以求出: 阶段3)电容放电阶段t2,t3(图5):从t2时刻,开关处于关闭状态时,在时间2吨,Cr2通过输出回路开始放电,从Ucr2线性减小,知道t3时刻降为0.。Cr2的电压分别为: 这个阶段的持续时间,t23(=t3-t2)可以求出:阶段4)自由阶段t3,t4(图5):输出电流流过二极管D2。这一阶段的持续时间为t34=Ts-t01-t12-t23其中Ts是开关周期。图4 降压模式下的等效电路图5 降压模式下软开关各时间段的波形B.升压模式升压零电压开关准谐振变换器图6所示。在升压模式下S1总是开通的,而S2和S3是关闭的。为简单起见,变换器被视为一个恒定电流源IL,提供一个恒定的电压U2。 在稳定状态下,从S4关断时开始一个完整的开关周期可以分为四个阶段。假设,在S4关断前,通过它的电流为输入电流IL。二极管D3是关断的,没有电流流过负载电压U2。在t0时刻,S4是关断的,输入电流被分到电容器Cr4。下面总结了四个阶段过程中电路的运作,见图7。阶段1)电容器充电阶段t0,t1(图7): 在t0时刻S4关断,电流IL流过Cr4,通过Cr4的电压Ucr4线性升高。这个阶段的持续时间,t01(=t1-t0),可以求出:阶段2)谐振阶段t1,t2(图7):在t1时刻,D3开通,电流IL的一部分流到U2。在t1时刻,Lr1和Cr2开始谐振。Lr1的电流跟Cr2的电压分别为:这个阶段的持续时间,t12(=t2-t1),可以求出:阶段3)电感放电状态t2,t3(图7):t2时刻后,电流iLR2线性减小在t3时刻达到0.这个阶段的持续时间,t23(=t3-t2),可以求出: 阶段4)自由阶段t3,t4(图7):在t3时刻,全部的输出电流IL流过二极管S4。到S4关断前,iS4保持恒定。图6 升压模式下的等效电路图7 升压模式下软开关各时间段的波形四模拟与试验验证为了验证所提出的软开关双向降压/升压型DC- DC转换器,进行了模拟和实验。实验原型如图8所示。设计所需要的参数如下:IGBT的型号为SGH40N60UFD。二极管D1,D2,D3,D4是集成二极管,型号为SGH40N60UFD,分别相当于开关S1,S2,S3,S4.Lr1=Lr2=90uH,Cr2=Cr4=0.01uF,Cr2=Cr4=0.01uF,L=2mH.在PSIM仿真中的配置如图9所示。变换器的开关频率为100kHz。当双向降压/升压型DC- DC变换器工作在升压模式,并U1=40V,U2=20v时,开关S1在降压模式,S4在升压模式占空比都是48.6%。图9 PISM模拟软开关双向降压/升压型DC- DC转换器拓扑结构图10(a)及(b)显示软开关双向降压/升压降压型DC DC变换器分别在降压模式和升压模式的仿真波形。这些波形跟图5跟图7的分析原则相似。双向变换器在正向和反向功率模式下均正常工作。降压模式的实验结果如图11所示。该控制的核心系统是DSP56F805。系统测试的工作频率为100kHz,Lr1=Lr2=90uH,Cr2=Cr4=0.01uF,L=2mH.图10软交换双向降压/升压型DC DC变换器的波形,(一)降压模式,(二)升压模式图12显示了升压模式的实验结果。测试系统的工作频率是40kHzLr1=Lr2=0.6mH,Cr2=Cr4=0.01uF,L=18mH。通道1是S4的驱动信号,通道2是通过S4的电压。很明显开关S4工作在零电压状态。一个新的软开关双向降压/升压型变换器已经在这篇文章里提出了。说明了其操作分析和功能。模拟与原型的实验结果验证它的工作原理。无论是降压和升压模式可在能量潮流的任何一个方向都可以实现。在降压模式下,变换器斩波器工作零电流开关状态。另一方面,在升压模式下,变换器斩波器工作在零电压开关状态。 作为结果,新电路的优点包括软开关,简单的拓扑结构,成本低,易于控制,使建议的双向功率变换器非常适合于推广应用。图11 降压模式下稳态运行图,Us1(10V/div),Us2(20V/div),iLr1(500mA/div)图12升压模式下稳态运行图,UGs4(10V/div),UCr4(20V/div)六.鸣谢作者非常感激的财政(美国国家科学基金会驻中国)的支持奖励编号为50777003。七.参考文献1彭芳,李卉,桂嘉苏,和杰克学劳勒“新的ZVS双向DC - DC转换器用于燃料电池和电池应用“,电力电子,2004年1月,第54-65页。2光王等。“燃料电池系统中的双向直流直流变换器”。电机及电子学工程师联合会电力电子研讨会。交通运输,1998年,第47-51页。3刘旦伟,李辉,“应用于多储能元件一个零电压开关双向DC - DC转换器”。电力电子会刊,第二卷。2006年9月,第1513-1517页。4李辉,李鹏方。“一种新型的零电压开关双向DC-DC转换器的建模”。航空航天和电力电子会刊2004年1月1日,第272 -283;5华丰肖;东华陈,谢少军,一个零电压开关双向DC -DC转换器,车载电子,汽车动力和推进力,2005年IEEE会议9月7号至9日二零零五年(补):7页6马刚;区温窿,刘圆圆,一个新型软开关双向直流/直流转换器与设计考量,电子与运动控制会议,2006。IPEMC 06。国际消费电子展/第1卷第5届国际电机及电子学工程师联合会14-16日,2006年8月页(补):1 - 4;7李界功能界别;高频准谐振转换器技术;诉讼的IEEE,卷76,第4期,1988年4月页(补):第377- 390页IMPROVED CONTROL STRATEGY ON BUCK-TYPE CONVERTER WITH POWER FACTOR CORRECTION SCHEME , Katsuya Hirachi“, Touru Iwade*, Takanori Mii*, Hidenobu Yasutsune* and Mutsuo Nakaoka* *Research and Development Division, The 2nd Takatsuki Plant, Yuasa Corporation 2-3-21 Kosobe-cho Takatsuki-City Osaka, 569, Japan *Department of Electrical and Electronics Engineering, The Graduate School of Technology, Yamaguchi University 2557 Tokiwa-dai Ube, Yamaguchi, 755, Japan Buck-Type high-power-factor PWM active converter topology is not only sufficiently capable of the effective elimination of input current harmonics, but also its characteristics include high efficiency, absence of inrush current, the capability to obtain low DC output voltage, ability to protect against short circuit, and so force. The buck-type high-power-factor converter has the inherent capability to become attractive power supplies for telecommunications energy systems. On the other hand, because this type of converter must employ high-inductance reactors, these tend to increase equipment in size and weight, and this has prevented their widespread use. This paper presents a new control strategy for Buck-type high-power-factor PWM converter which can reduce the size and weight of reactor and also eliminate the ripple component included into output voltage. The operating principle and simulation results are described. Introduction High-powerfactor converters are classified into three types: buck-type, boost-type, and buck-boost-type topologies. Fig.1 shows the typical non isolated circuit configurations for these three types. All three operate on the basis of the processing of accumulating energy in reactor L1 while the switching device T1 is ON, and transferring reactor energy to the capacitor C1 when the switching device T1 is OFF. Appropriate control of the reactor current forms input current Iin into a sinewave with the same phase as the utility-grid voltage Vin. In the case of boost-type and buck-boost-type converters, the AC input voltage is directly applied across the reactor U, when the switching device T1 is conducting. But in the case of buck-type converter, the voltage applied to the reactor is a (a) Buck-Type F i g . 1 Typical Non-Isolated dBerence between the absolute value of the AC input voltage and the DC output voltage. Thus, it is possible to accumulate energy at all times in the reactor L1 of the boost-type and buck-boost-type converters, while in the buck-type it is impossible to accumulate energy in the reactor when the absolute value of the input voltage is lower than the output voltage, i.e., around the zero cross point of the input voltage. For this reason, the buck-type makes it necessary to accumulate sufficient energy in the reactor in order to provide the energy needed when the absolute value of the input voltage is low. This means that the buck-type requires much larger inductance than that of boost-type or buck-boost-type, and larger inductance increases physical size and weight of the reactor. This makes it necessary to reduce the reactor inductance as much as possible in buck-type high-power-factor converters, but to reduce the inductance brings an increase in reactor current ripple, which causes a large amount of distortion in the AC input current. In order to solve this problem, a control strategy defmed as pulse area modulation by which hardly any distortion i s arised in the input current even when the reactor current contains a large ripple. Operation of Buck-Type High-Power-Factor Converters Fig.2 shows the circuit configuration of the buck-type high-power-factor converter. Reactor Lout has an inductance of adequate magnitude, and current I(Lout) keeps continuous mode. When T1 is ON, current takes the following path, Vin - + D1 + T1 + Lout - + C1 - D4 + Vin, and input current l(Vin) becomes equal to I(Lout). ) Boost-Type Circuit Conftgurations for Three Types of High (c) BUck-BWSt-Type -Power-Factor Converters 0-7803-2795-0 826 When T1 is OFF, I(Lout) circles through the following path, Lout -+ C1 - Df - Lout, which makes the input current I(Vin) zero. Thus, when the value of Lout is sufficiently large and the ripple of its current is negligible small, the converter employs the control circuit shown in Fig.3, which compares the sine wave in the utility grid to the sawtooth wave carrier. By this procedure, the switching device is controlled with PWM strategy, and the input current is controlled to so as to become a perfect sine wave. i vout Vref Fig.2 Main Circuit Codguration of Buck-Type High-Power-Factor Converter to T1 Fig3 Conventional Control Circuit Codgyration Fig.4 shows the simulated waveform. Waveform V(20), which is a rectified sinewave with the same phase as the input voltage, is compared with the sawtooth wave V(lO), and the drive signal of switching device T1 is generated. This results in the creation of the input current waveform I(%) shown in Fig.4. Fig.5 shows the result of the fourier analysis of the waveform I(vin). All the harmonic components are under 2%. Fig.4 Simulation Analysis with no Ripple Current at Reactor Lout 0 2 3 4 5 6 7 8 91011121314151617181920 Harmonics o r d e r s Fig5 Fourier Analysis of Input Current I(%) with no Rippie Current at Reactor Lout The simulation assumes as an operating frequency of 2 kHz in order to make the PWM control easier to understand. In actual circuits, the operating frequencies are set at high levels of several dozen kHz, and the high frequency components in the input current I(Vm) can be easily removed with a small filter. But when the ripple current of I(Lout) cannot be negligible, employing the control strategy in Fig.3 brings -an input current waveform distortion that corresponds to the magnitude of the ripple current. Fig.6 shows the simulation results when the ripple current of I(Lout) cannot be negligible. In this case, reactor current I(Lout) contains a ripple current of BAP-p. As a consequence, input current I(Vin) has the waveform shown in Fig.6. Fig.7 shows the result of the fourier analysis of the waveform I(Vin). There is a large third harmonic component of about 13.5%. Simulation specifications are shown in Table 1. Fig.6 Simulation Analysis with LaxpERipple Current at Reactor Lout . Pulse area modulation Control circuit implementation and control strategy Even if the reactor current I(Lout) contains a large ripple, shaping the input current into a sinewave requires that the pulse width are appropriately controlled according to the instantaneous value of reactor current. Pulse area modulation which modulates the area of the current pulse that passes 827 The circuit also compares the DC output voltage Vour to the reference voltage Vref, and uses the multiplier to control the amplitude of V(20), t making it possible to control Vout at a constant voltage Fig9 illustrates the principle of the pulse area modulation which is employed in this control circuit. Because the sawtooth wave V(10) used in the modulat the integrating reactor current (Lout), its proportionally to Iwut). When reactor current gradually increases, the current becomes a sawtooth wave whose gradient increases gradually as shown in Fig.9. Assuming that the reference wave V(20) has a constant voltage as shown in Fig.9, the duty ratio of T1 gradually decreases. So, the input current waveform I(%) becomes square wave in which peak value gradually increases gradually decreases as shown in Fig.9. The pulse shown with hatched lin value as that shown with dotted area, pulse width with equal area. If the r constant, the areas of these pulses will reference waveform increases or decreases, the pulse areas increase or decrease proportionally. And pulse area is equal to the instantaneous value of the input current I(Vin). Thus, if the reference waveform i s changed into a sinewave as shown in Fig& the input curr through a switching device i s suitable for this kind of control scheme. 9 2 3 4 5 6 7 8 91011121314151617181920 Harmonics Orders Fig.7 Fourier Analysis of Input Current I(Vin) with Large Ripple Current at Reactor Lout Pulse area modulation being introduced to a buck-boost- type circuit has been proposedl. But it would seem that applying the pulse area modulation to buck-type converter circuits have significant advantage than applying it to the buck -boost-type circuit whose reactor operates at high frequency2. Fig.8 shows the proposed control circuit implementation include the pulse area modulation. Reactor current (Lout) is detected at shunt SH1, whose voltage V(SH1) is amplified and fed into the integrating circuit. This integrating circuit is reset at a constant interval, and its output is the sawtooth wave V(lO), which has a gradient that is proportional to the value of I(Lout). T h i s sawtooth wave is compared to the reference wave V(20), which is specified by the fill-wave rectified input voltage V1, thereby obraining the P W M wave that drives the switching device T1. . / I , . t o T1 Integrating Circuit Drive V(SH1) Amplifier Multiplier VOUt Reference Wave lvinl vfefq-i I F i g . 8 Proposed Control Circuit Configuration F i g . 9 Principle of Pulse Area Modulation Simulation results u s b the DUI se area mod ulatiog he pulse area modulation. Simulation specitications 89 Table 1. It is obvious that the frequency of wave is constant and its gradient is proportional to the reactor current Fig.10 shows some simulation result I(Lout). Fig.11 shows an another simulation pulse area modulation. The peak value of input current I(Vm) is equal to the reactor current I(Lout). And the pulse width of I(%) is controlled so that the area of each pulse can be changed in accordance with the AC input voltage V(2,l). Fig.12 shows the result of a fourier analysis on the input 828 current waveform I(Vin) as shown in Fig.11. Harmonics ExDerimental results of proposed circuit components are suppressed much more than in Fig.7 in which pulse area modulation is not used. Just as in Fig.4 and Fig.6, the operating frequency for simulations in Fig.10 and Fig.11 is set at 2 kHz to make the operation easy to understand. In practical circuit, the operating frequency is set at high frequency of several tens of kHz, and the high-frequency Fig.13 and Fig.14 show the waveforms of small capacity active converter breadboard ivhich is controlled on the bases of the pulse area modulation strategy. Although the reactor current have large ripple component as shown in Fig.13, the input current has almost no distortion as shown in Fig.14. components in the input current I(Vii) are easily removed with a small filter. EL Bv m 9 85ms alm S m S 0 U(1B) * U(2Clo) Tim Fig10 Control Circuit Waveform under Pulse Area Modulation scheme 8oms 84ms 88ms 92m 95ms l00ms 0 -1(Uin) Time Fig.11 M a i n Circuit Waveform under Pulse Area Modulation scheme 0 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 Harmonics O r d e r s FIJ2 Fourier Analysis o f Input Current I(Vin) under Pulse Area Moduration Scheme - 2mseJdiv Input Voltage: sOV/div Reactor Current: 5Ndiv Fig.l.3 Measured Reactor Current and Input Voltage Waveforms - ov - ov Input Voltage: 50Vldiv _* 2mseddiv Input Current: 5Ndiv Fig.14 Measured Input Voltage and Inpu! Current WaveBorms Elimination of ripple voltage Control circuit configuration and control strategv In power supplies for telecommunications energy systems, preventing the noise of communication equipment makes it necessary to suppress the ripple voltage in the DC output voltage to a sufficiently small value. But in single- phase input high-power-factor active converters, the reactor current ordinarily includes a large amount of ripple current whose frequency is twice that of the utility grid AC frequency, and for this reason, a ripple voltage with a frequency twice that of the utility grid AC also appears i n the output voltage. Buck-type high-power-factor converter has also a large amount ,ef ripple voltage in DC output voltage. kig.15 shows 829 the simulation results of the reactor current I(Lout) and the DC output voltage V(7) under the conditions in Table 1. Reactor current I(Lout) includes a ripple current of 28Ap-p with 100 Hz, and DC output voltage V(7) includes 0.74Vp-p ripple voltage. Tim Fig.15 Waveform of Output Voltage Ripple Fig.16 shows the newly proposed circuit configuration of the buck-type high-power-factor converter with auxiliary switching circuit which suppress the output voltage ripple. Auxiliary switch T2 in series with diode D5 are connected in parallel to the reactor Lout. When T2 is ON, the reactor current circulates through T2 and D5, but when TZ is OFF, the reactor current is supplied to C1. T h i s means that the circuit in Fig.16 has the three operational modes listed in Table 2 in accordance with the state of switching devices T1 and T2. The mode i n which both devices are O N should be removed. - Fig.16 New Main Circuit Collrguration of Buck-Type High-Power-Fador Convertex with A u x i l i a r y Circuit Table 2 Three operational modes Number Current N OFF Increase Increase FF OFF Decrease Decrease As mentioned above, the duty ratio of T1 is to be determined by the pulse area modulation, and the input current is formed into a sine wave. The duty ratio of T2 is to be also determined by the pulse area modulation, and the pulse width is determined so that the ripple voltage of DC output voltage will be eliminated. Fig.17 shows the proposed circuit configuration which includes a control circuit with auxiliary switch T2. The gate Drive signal of T1 can be produced in the same way as in Fig.8. The gate drive signal to T2 is to be produced by comparing the output voltage V(10) of the integrating circuit and the control voltage V(30). When V(10) is larger than V(30), the auxiliary switch T2 closes and stops the delivery of power to C1. When V(10) is smaller than V(30), the auxiliary switch is OFF, and the power is supplied to C1. Because the control voltage V(30) i s a constant voltage, the power supplied to C1 has a constant value, and DC output voltage Vout has no ripple. V(S circuit Amplifier Multiplier TT Vout 4 Reference Wave vref - I I to T2 lvin I - % / - + Comparator V30 Drive vcont Circuit Fig.17 Proposed Circuit Con6guration with Control Circuit for AuxZary Switch T2 Simulation results with auxiliary switching circuit Fig.18 shows the *simulated waveforms of the control circuit. Just as i n Fig.10, the gate drive signal to T1 is to be obtained by comparing the sawtooth wave V(10) with the sinusoidal waveform V(20), which has the same phase as the input voltage. The gate drive signal to T2 can be obtained by comparing the sawtooth wave V(10) with the DC voltage V(30). The DC voltage V(30) is set as high as possible without overshooting the peak values of the V(10) voltage. Fig.19 shows the simulation results for T1 current waveform I(Sw and T2 current waveform I(SAUX). Where the current peak value is high, I(SAUx) is controlled to have a large pulse width, on the other hand, where peak value is low, pulse width diminishes. Under this type of control, the energy transferred to the DC output side is kept constant. Fig20 shows the simulation results for the reactor current waveform Iwut) and the DC output voltage 830 waveform V ( 7 ) . Although the reactor current includes a large ripple component of 214-p, the DC output voltage has hardly any low-frequency ripple voltage. Fig.18 Control Circuit Waveforms with Auxiliary Switch Fig.19 Main Switch and Auxiliary Switch Waveforms A 2 kHz ripple in the DC output voltage is included as seen in the simulated waveform in Fig.20, but because practical circuit is operated at several tens of kHz, the ripple voltage of the operating frequency component can be completely eliminated by the capacitor C1. The simulation specification are the same as i n Table 1, and the PSpice circuit iile used in the simulation is shown at the appendix. Application for high frequencv link topology / 831 The circuit configuration illustrated in Fig.16 is the simplest circuit of the buck-type high-power-factor converter, but the full-bridge type circuit
温馨提示:
1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
2: 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
3.本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
提示  人人文库网所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
关于本文
本文标题:外文翻译中英文-改进具有功率因数校正方案降压型变换器的控制策略
链接地址:https://www.renrendoc.com/p-12828310.html

官方联系方式

2:不支持迅雷下载,请使用浏览器下载   
3:不支持QQ浏览器下载,请用其他浏览器   
4:下载后的文档和图纸-无水印   
5:文档经过压缩,下载后原文更清晰   
关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

网站客服QQ:2881952447     

copyright@ 2020-2025  renrendoc.com 人人文库版权所有   联系电话:400-852-1180

备案号:蜀ICP备2022000484号-2       经营许可证: 川B2-20220663       公网安备川公网安备: 51019002004831号

本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知人人文库网,我们立即给予删除!