




全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
我带领班子成员及全体职工,积极参加县委、政府和农牧局组织的政治理论学习,同时认真学习业务知识,全面提高了自身素质,增强职工工作积极性,杜绝了纪律松散19.2.1正比例函数【学习目标】 1、理解正比例函数的概念及其图象的特征2、能够画出正比例函数的图象3、能够判断两个变量是否能够构成正比例函数关系4、能够利用正比例函数解决简单的数学问题【重 点】正比例函数的概念【难 点】正比例函数性质【课前准备】 1、还记得描点法画函数图象的一般步骤吗?_,_ 2、细读课本110111页,完成课本111页的“思考”,试着写出函数解析式: ; ; ; 。【学习流程】 一、正比例函数的概念 观察“思考”中所得的四个函数; (1)观察这些函数关系式,这些函数都是常数与自变量 的形式,(2)一般地,形如 ( )函数,叫做正比例函数,其中叫做 。 思考:为什么强调K是常数,K0 ? (3)、列举日常生活中正比例函数的模型,你知道多少?练一练(1)、下列函数哪些是正比例函数? y= y= y=-+1 y=2x y=x+1 y=(a+1)x+2(2)、若y=5x是正比例函数,则m=_.(3)、若y=(m-2)x是正比例函数,则m=_. 二、正比例函数图像的画法与性质(一)、用描点法画出下列函数的图像(1)、 y=2x (2)、 y=-2x解:(1)列表得: 解:(1)列表得: -3-2-10123y=2xx-3-2-10123y=2x (2)描点、连线: (2)描点、连线: (3)、 y=0.5x (4)、 y=-0.5x解:(1)列表得: 解:(1)列表得: -3-2-10123y=2xx-3-2-10123y=2x (2)描点、连线: (2)描点、连线: (二)、活动二:观察上题画函数,完成下列问题(1)正比例函数是一条 ,它一定经过 。(2)因为过 点有且只有一条直线,我们在画正比例函数图象时,只需确定两点,通常是( , )和( , ) (3)当k 0时,直线经过 象限,随的增大而 当k0时,直线经过 象限,随的减小而 板块三、知识升华 既然正比例函数的图像是一条直线,那么最少几个点就可以画出这条直线?怎样画最简单? 试一试:用最简单的方法画出下列函数的图像 (1)、 y=-3x (2) y=x解:(1)当x=_时,y=_, 解: 当x=_时,y=_, 取点_和_,(2)描点、连线得:收获乐园 本节课你有哪些收获?请在小组内交流。随堂练习1、 汽车以40千米/时的速度行驶,行驶路程y(千米)与行驶时间x(小时)之间的函数解析式为_.y是x的_函数。2、 圆的面积y(cm)与它的半径x(cm)之间的函数关系式是_.y是x的_函数。3、 函数y=kx(k0)的图像过P(-3,7),则k=_,图像过_象限。4、 y=, y=, y=3x+9, y=2x中,正比例函数是_.5、 在函数y=2x的自变量中任意取两个点x,x,若xx,则对应的函数值y与y的大小关系是y_y.6、 表示函数y=-kx(k0)的图像是( )。 A B C D 7、若y与x-1成正比例,x=8时,y=6。写出x与y之间的函数关系式,并分别求出x=4和x=-3时的值 8、若y=y+y,y与x成正比例,y与x-2成正比例,当x=1时,y=0,当x=-3时,y=4。求当x=3时的函数值。 讨论交流问题:观察并比较:1、两个函数图家象的相同点与不同点和变化规律2、正比例函数是过原点的一条直线,其变化规律是否与有关?三、 巩固提升1、下列函数中,哪些是正比例函数?2、(1)若是正比例函数,则 (2)若函数是关于的正比例函数,则 3、已知函数是关于的正比例函数(!)求正比例函数的解析式(2)画出它的图象(3)若它的图象有两点,当时,试比较的大小四学习体会本节课你学会了什么?有哪些
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 高级茶艺师试题库(含答案)
- 2025年物流园区发展模式与创新案例研究报告
- 2025年绿色金融可持续发展目标(SDGs)实践与绿色基金管理报告
- 2025年特色小镇产业培育社会稳定风险评估与区域发展报告
- 2025年教育游戏化在家庭教育中的应用与教学设计指南
- 2025年城市黑臭水体治理实施方案中的水环境治理与城市雨水收集利用报告
- 威海鑫山冶金有限公司校园招聘模拟试题附带答案详解完整
- 推拿治疗学练习题及答案详解(考点梳理)
- 护士企业编制面试题库含完整答案详解(历年真题)
- 2025低价股份转让协议及后续股权权益保障合同
- REE-OAT变桨系统现场调试手册
- 学校食堂食材采购询价方案范文(35篇)
- 《化妆品技术》课件-化妆品的历史起源与发展
- 住宅公共部分装修综合项目施工专项方案
- 宣讲《铸牢中华民族共同体意识》全文课件
- 皮肤病真菌感染性皮肤
- 国际音标卡片(打印版)
- 《小学开学第一课:学生守则、行为规范、班级班规》课件
- 幼儿园行政工作保密协议
- 环境监测课件
- 骨折内固定术术前宣教
评论
0/150
提交评论