高中数学 第3章 空间向量与立体几何章末复习提升学案 苏教版选修_第1页
高中数学 第3章 空间向量与立体几何章末复习提升学案 苏教版选修_第2页
高中数学 第3章 空间向量与立体几何章末复习提升学案 苏教版选修_第3页
高中数学 第3章 空间向量与立体几何章末复习提升学案 苏教版选修_第4页
高中数学 第3章 空间向量与立体几何章末复习提升学案 苏教版选修_第5页
已阅读5页,还剩3页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

我带领班子成员及全体职工,积极参加县委、政府和农牧局组织的政治理论学习,同时认真学习业务知识,全面提高了自身素质,增强职工工作积极性,杜绝了纪律松散第3章 空间向量与立体几何1空间向量的运算及运算律空间向量加法、减法、数乘、向量的意义及运算律与平面向量类似,空间任意两个向量都可以通过平移转化为平面向量,两个向量相加的三角形法则与平行四边形法则仍然成立2两个向量的数量积的计算向量的数量积运算要遵循数量积的性质和运算律,常用于有关向量相等、两向量垂直、射影、夹角等问题中3空间向量的坐标运算,关键是建立恰当的空间直角坐标系,然后再利用有关公式计算求解常用向量的坐标运算来证明向量的垂直和平行问题,利用向量的夹角公式和距离公式求解空间角与空间距离的问题4空间向量的基本定理说明:用三个不共面的已知向量a,b,c可以线性表示出空间任意一个向量,而且表示的结果是惟一的5利用向量解决几何问题具有快捷、有效的特征一般方法如下:先将原问题转化为等价的向量问题,即将已知条件中的角转化为向量的夹角,线段长度转化为向量的模,并用已知向量表示出未知向量,然后利用向量的运算解决该向量问题,从而原问题得解6利用向量坐标解决立体几何问题的关键在于找准位置,建立适当、正确的空间直角坐标系,难点是在已建好的坐标系中表示出已知点的坐标,只有正确表示出已知点的坐标,才能通过向量的坐标运算,实现几何问题的代数化解法1数形结合思想数形结合思想就是把抽象的数学语言与直观图形结合来思索,抽象思维和形象思维结合,通过“以形助数”和“以数解形”使复杂问题简单化,抽象问题具体化,从而起到优化解题过程的目的空间向量是既有大小又有方向的量,空间向量本身就具有数形兼备的特点,因此将立体几何中的“形”与代数中的“数”有机地结合在一起,使解答过程顺畅、简捷、有效,提高解题速度例1某几何体ABCA1B1C1的三视图和直观图如图所示(1)求证:A1C平面AB1C1;(2)求二面角C1AB1C的余弦值(1)证明由三视图可知,在三棱柱ABCA1B1C1中,AA1底面A1B1C1,B1C1A1C1,且AA1AC4,BC3.以点C为原点,分别以CA,CB,CC1所在直线为x轴、y轴、z轴,建立空间直角坐标系,如图所示由已知可得A(4,0,0),B(0,3,0),C(0,0,0),A1(4,0,4),B1(0,3,4),C1(0,0,4),(4,0,4),(4,0,4),(0,3,0),0,0,CA1C1A,CA1C1B1,又C1AC1B1C1,C1A平面AB1C1,C1B1平面AB1C1,A1C平面AB1C1.(2)解由(1)得,(4,0,0),(0,3,4),设平面AB1C的法向量为n(x,y,z),n,n,即令y1,则z,n(0,1,),又由(1)知,平面AB1C1的一个法向量为(4,0,4),cosn,二面角C1AB1C的余弦值为.跟踪训练1已知正方体ABCDA1B1C1D1的棱长为2,E、F分别是BB1、DD1的中点,求证:(1)FC1平面ADE;(2)平面ADE平面B1C1F.证明(1)建立如图所示空间直角坐标系Dxyz,则有D(0,0,0),A(2,0,0),C(0,2,0),C1(0,2,2),E(2,2,1),F(0,0,1),B1(2,2,2),所以(0,2,1),(2,0,0),(0,2,1)设n1(x1,y1,z1)是平面ADE的法向量,则n1,n1,即得令z12,则y11,所以n1(0,1,2)因为n1220,所以n1.又因为FC1平面ADE,所以FC1平面ADE.(2)因为(2,0,0),设n2(x2,y2,z2)是平面B1C1F的一个法向量由n2,n2,得得令z22,得y21,所以n2(0,1,2),因为n1n2,所以n1n2,所以平面ADE平面B1C1F.2转化和化归思想转化和化归思想是指在解决数学问题时采用某种手段将问题通过变换使之转化,进而使问题得到解决的一种解题策略其本质含义是:在解决一个问题时人们的眼光并不落在结论上,而是去寻觅、追溯一些熟知的结论,由此将问题化繁为简,化大为小,各个击破,达到最终解决问题的目的例2如图所示,已知多面体EABCDF的底面ABCD是边长为2的正方形,EA底面ABCD,FDEA,且FDEA1.(1)求多面体EABCDF的体积;(2)求直线EB与平面ECF所成角的正弦值;(3)记线段BC的中点为K,在平面ABCD内过点K作一条直线与平面ECF平行,要求保留作图痕迹,但不要求证明解(1)如图所示,连结ED,EA底面ABCD且FDEA,FD底面ABCD,FDAD,DCAD,FDCDD,FD平面FDC,CD平面FDC,AD平面FDC,VEFCDADSFDC122.VEABCDEASABCD222,多面体EABCDF的体积V多面体VEFCDVEABCD.(2)以点A为原点,AB所在的直线为x轴,AD所在的直线为y轴,AE所在的直线为z轴,建立空间直角坐标系如图所示由已知可得A(0,0,0),E(0,0,2),B(2,0,0),C(2,2,0),F(0,2,1),(2,2,2),(2,0,2),(0,2,1),设平面ECF的法向量为n(x,y,z),则得取y1,得平面ECF的一个法向量为n(1,1,2),设直线EB与平面ECF所成角为,sin|cosn,|.(3)如图所示,取线段CD的中点Q,连结KQ,直线KQ即为所求跟踪训练2如图,四棱锥FABCD的底面ABCD是菱形,其对角线AC2,BD.CF与平面ABCD垂直,CF2.求二面角BAFD的大小解过点A作AE平面ABCD.以A为坐标原点,、方向分别为x轴、y轴、z轴的正方向建立空间直角坐标系(如图)于是B,D,F(0,2,2)设平面ABF的法向量n1(x,y,z),则由得令z1,得所以n1(,1,1)同理,可求得平面ADF的法向量n2(,1,1)由n1n20知,平面ABF与平面ADF垂直,所以二面角BAFD的大小等于.3方程思想方程思想是从问题的数量关系入手,运用数学语言将问题中的条件转化为数学模型(方程、不等式),然后通过解方程(组)或不等式(组)来使问题获解用空间向量解决立体几何问题属于用代数方法求解,很多时候需引入未知量例3如图所示,在四棱锥PABCD中,底面ABCD为矩形,侧棱PA底面ABCD,AB,BC1,PA2,E为PD的中点(1)求直线AC与PB所成角的余弦值;(2)在侧面PAB内找一点N,使NE平面PAC,并求出点N到AB的距离和点N到AP的距离解(1)以A为坐标原点建立空间直角坐标系,如图,则A(0,0,0),B(,0,0),C(,1,0),P(0,0,2),D(0,1,0),E(0,1),从而(,1,0),(,0,2)设与的夹角为,则cos,所以AC与PB所成角的余弦值为.(2)由于点N在侧面PAB内,故可设点N的坐标为(x,0,z),则(x,1z)由题意知(0,0,2),(,1,0),由NE平面PAC,得即化简得即点N的坐标为(,0,1),所以点N到AB的距离为1,点N到AP的距离为.跟踪训练3如图,在直三棱柱ABC-A1B1C1中,AB4,ACBC3,D为AB的中点(1)求点C到平面A1ABB1的距离;(2)若AB1A1C,求二面角A1-CD-C1的平面角的余弦值解(1)由ACBC,D为AB的中点,得CDAB,又CDAA1,AA1ABA,AA1平面A1ABB1,AB平面A1ABB1,故CD平面A1ABB1,所以点C到平面A1ABB1的距离为CD.(2)如图,过点D作DD1AA1交A1B1于D1,在直三棱柱中,易知DB,DC,DD1两两垂直,以D为原点,射线DB,DC,DD1分别为x轴,y轴,z轴的正半轴建立空间直角坐标系Dxyz.设直三棱柱的高为h,则A(2,0,0),A1(2,0,h),B1(2,0,h),C(0,0),C1(0,h),从而(4,0,h),(2,h),由,有8h20,h2.故(2,0,2),(0,0,2),(0,0)设平面A1CD的法向量为m(x1,y1,z1),则m,m,即取z11,得m(,0,1)设平面C1CD的法向量为n(x2,y2,z2),则n,n,即取x21,得n(1,0,0),所以cosm,n.所以二面角A1CDC1的平面角的余弦值为.空间向量的引入为立体几何问题的解决提供了新的思路,作为解决空间几何问题的重要工具,对空间向量的考查往往渗透于立体几何问题解决的过程之中,成为高考必考的热点之一(1)对本章的考查的重点是空间线面之间的位置关系的证明与探究;空间中的线线角、线面角以及二面角的求解;空间中简单的点点距和点面距的求解给出位置关系、角度或距离探求点的存在性问题在近几年考查中已有体现题目主要以解答题的形式给出,兼顾传统的立体几何的求解方法,主要考查空间向量在解决立体几何中的应用,渗透空间向量的基本概念和运算(2)空间向量的引入使空间几何体也具备了“数字化”的特征,从而把空间线面关系的逻辑推理证明与空间角、距离的求解变成了纯粹的数字运算问题,降低了思维的难度,成为高考必考的热点考查的重点是结合空间几何体的结构特征求解空间角与距离,其中二面角是历年高考命题的热点,多为解答题(3)利用向量处理平行和垂直问题,主要是解决立体几何中有关垂直和平行判断的一些命题对

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论