已阅读5页,还剩20页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
在学生就要走出校门的时候,班级工作仍要坚持德育先行,继续重视对学生进行爱国主义教育、集体主义教育、行为规范等的教育,认真落实学校、学工处的各项工作要求2015-2016学年江西省南昌市九年级(上)期末数学试卷一、选择题(本大题共6小题,每小题3分,共18分每小题只有一个正确选项)1已知3x=5y(xy0),则下列比例式成立的是()A =B =C =D =2已知点P(3,2)是反比例函数图象上的一 点,则该反比例函数的表达式为()Ay=By=Cy=Dy=3已知A为锐角,且sinA=,那么A等于()A15B30C45D604如图,在ABC中,DEBC,分别交AB,AC于点D,E若AD=1,DB=2,则ADE的面积与ABC的面积的比等于()ABCD5如图,在ABC中,D为AC边上一点,DBC=A,BC=,AC=3,则CD的长为()A1BC2D6如图,ABC中,A、B、C所对的三边分别记为a,b,c,O是ABC的外心,ODBC,OEAC,OFAB,则OD:OE:OF=()Aa:b:cBCcosA:cosB:cosCDsinA:sinB:sinC二、填空题(本大题共8小题,每小题3分,共24分)7一个圆盘被平均分成红、黄、蓝、白4个扇形区域,向其投掷一枚飞镖,且落在圆盘内,则飞镖落在白色区域的概率是8方程x2x=0的解是9如图,已知l1l2l3,若AB:BC=3:5,DF=8,则DE=10如果一个扇形的圆心角为135,半径为8,那么该扇形的弧长是11如图,ABCD是O的内接四边形,B=140,则AOC的度数是度12将二次函数y=x24x+5化成y=(xh)2+k的形式,则y=13如图是44的正方形网格,点C在BAD的一边AD上,且A、B、C为格点,sinBAD的值是14如图,将函数y=(x0)的图象沿y轴向下平移3个单位后交x轴于点C若点D是平移后函数图象上一点,且BCD的面积是3,已知点B(2,0),则点D的坐标三、(本大题共4小题,每小题6分,共24分)15计算:2sin45+(2)0tan3016设x1,x2是关于x的方程x24x+k+1=0的两个实数根,是否存在实数k,使得x1x2x1+x2成立?请说明理由17如图,在ABC中,AB=AC,点D、E分别在BC、AB上,且BDE=CAD求证:ADEABD18如图A、B在圆上,图1中,点P在圆内;图2中,点P在圆外,请仅用无刻度的直尺按要求画图求作CDP,使CDP与ABP相似,且C、D在圆上,相似比不为1四、(本大题共4小题,每小题8分,共32分)19已知:ABC在坐标平面内,三个顶点的坐标为A(0,3)、B(3,4)、C(2,2),(正方形网格中,每个小正方形边长为1个单位长度)(1)画出ABC向下平移4个单位得到的A1B1C1;(2)以B为位似中心,在网格中画出A2BC2,使A2BC2与ABC位似,且位似比2:1,直接写出C2点坐标是;(3)A2BC2的面积是平方单位20一枚棋子放在边长为1个单位长度的正六边形ABCDEF的顶点A处,通过摸球来确定该棋子的走法,其规则是:在一只不透明的袋子中,装有3个标号分别为1、2、3的相同小球,搅匀后从中任意摸出1个,记下标号后放回袋中并搅匀,再从中任意摸出1个,摸出的两个小球标号之和是几棋子就沿边按顺时针方向走几个单位长度棋子走到哪一点的可能性最大?求出棋子走到该点的概率(用列表或画树状图的方法求解)21已知:直角梯形OABC中,BCOA,AOC=90,以AB为直径的圆M交OC于D、E,连接AD、BD、BE(1)在不添加其他字母和线的前提下,直接写出图中的两对相似三角形(2)给出其中一对相似三角形的证明22某学校的校门是伸缩门(如图1),伸缩门中的每一行菱形有20个,每个菱形边长为30厘米校门关闭时,每个菱形的锐角度数为60(如图2);校门打开时,每个菱形的锐角度数从60缩小为10(如图3)问:校门打开了多少米?(结果精确到1米,参考数据:sin50.0872,cos50.9962,sin100.1736,cos100.9848)五、(本大题共10分)23如图1,在ABC中,ACB=90,BC=2,A=30,点E,F分别是线段BC,AC的中点,连结EF(1)线段BE与AF的位置关系是, =(2)如图2,当CEF绕点C顺时针旋转a时(0a180),连结AF,BE,(1)中的结论是否仍然成立如果成立,请证明;如果不成立,请说明理由(3)如图3,当CEF绕点C顺时针旋转a时(0a180),延长FC交AB于点D,如果AD=62,求旋转角a的度数六、(本大题共12分)24如图,二次函数y=x2+bx+c的图象与x轴交于点A(1,0),B(2,0),与y轴相交于点C(1)求二次函数的解析式;(2)若点E是第一象限的抛物线上的一个动点,当四边形ABEC的面积最大时,求点E的坐标,并求出四边形ABEC的最大面积;(3)若点M在抛物线上,且在y轴的右侧M与y轴相切,切点为D以C,D,M为顶点的三角形与AOC相似,求点M的坐标2015-2016学年江西省南昌市初中教育集团化联盟九年级(上)期末数学试卷参考答案与试题解析一、选择题(本大题共6小题,每小题3分,共18分每小题只有一个正确选项)1已知3x=5y(xy0),则下列比例式成立的是()A =B =C =D =【考点】比例的性质【分析】根据两内项之积等于两外项之积对各选项分析判断即可得解【解答】解:A、由=得3x=5y,故本选项正确;B、由=得xy=15,故本选项错误;C、由=得5x=3y,故本选项错误;D、由=得5x=3y,故本选项错误故选A2已知点P(3,2)是反比例函数图象上的一 点,则该反比例函数的表达式为()Ay=By=Cy=Dy=【考点】待定系数法求反比例函数解析式【分析】把点P(3,2)代入函数y=中可先求出k的值,那么就可求出函数解析式【解答】解:设反比例函数的解析式为y=(k0),点P(3,2)是反比例函数图象上的一 点,2=,得k=6,反比例函数解析式为y=故选D3已知A为锐角,且sinA=,那么A等于()A15B30C45D60【考点】特殊角的三角函数值【分析】根据特殊角的三角函数值求解【解答】解:sinA=,A为锐角,A=30故选B4如图,在ABC中,DEBC,分别交AB,AC于点D,E若AD=1,DB=2,则ADE的面积与ABC的面积的比等于()ABCD【考点】相似三角形的判定与性质【分析】根据DEBC,即可证得ADEABC,然后根据相似三角形的面积的比等于相似比的平方,即可求解【解答】解:AD=1,DB=2,AB=AD+DB=3,DEBC,ADEABC,=()2=()2=故选:D5如图,在ABC中,D为AC边上一点,DBC=A,BC=,AC=3,则CD的长为()A1BC2D【考点】相似三角形的判定与性质【分析】由条件可证明CBDCAB,可得到=,代入可求得CD【解答】解:DBC=A,C=C,CBDCAB,=,即=,CD=2,故选C6如图,ABC中,A、B、C所对的三边分别记为a,b,c,O是ABC的外心,ODBC,OEAC,OFAB,则OD:OE:OF=()Aa:b:cBCcosA:cosB:cosCDsinA:sinB:sinC【考点】三角形的外接圆与外心【分析】设三角形的外接圆的半径是R,根据垂径定理,在直角OBD中,利用三角函数即可用外接圆的半径表示出OD的长,同理可以表示出OE,OF的长,即可求解【解答】解:设三角形的外接圆的半径是R连接OB,OCO是ABC的外心,且ODBCBOD=COD=A在直角OBD中,OD=OBcosBOD=RcosA同理,OE=RcosB,OF=RcosCOD:OE:OF=cosA:cosB:cosC故选C二、填空题(本大题共8小题,每小题3分,共24分)7一个圆盘被平均分成红、黄、蓝、白4个扇形区域,向其投掷一枚飞镖,且落在圆盘内,则飞镖落在白色区域的概率是【考点】几何概率【分析】根据一个圆盘被平均分成红、黄、蓝、白4个扇形区域,飞镖落在每一个区域的机会是均等的,其中白色区域的面积占了其中的,再根据概率公式即可得出答案【解答】解:一个圆盘被平均分成红、黄、蓝、白4个扇形区域,飞镖落在每一个区域的机会是均等的,其中白色区域的面积占了其中的,飞镖落在白色区域的概率是;故答案为:8方程x2x=0的解是0或1【考点】解一元二次方程因式分解法【分析】本题应对方程进行变形,提取公因式x,将原式化为两式相乘的形式,再根据“两式相乘值为0,这两式中至少有一式值为0”来解题【解答】解:原方程变形为:x(x1)=0,x=0或x=19如图,已知l1l2l3,若AB:BC=3:5,DF=8,则DE=3【考点】平行线分线段成比例【分析】首先由已知l1l2l3,证得,又由AB:BC=3:5,DF=16,即可求得DE的长【解答】解:l1l2l3,AB:BC=3:5,AB+BC=AC,AB:AC=3:8,DF=,DE=3故答案为:310如果一个扇形的圆心角为135,半径为8,那么该扇形的弧长是6【考点】弧长的计算【分析】弧长公式是l=,代入就可以求出弧长【解答】解:弧长是: =611如图,ABCD是O的内接四边形,B=140,则AOC的度数是80度【考点】圆内接四边形的性质;圆周角定理【分析】由ABCD是O的内接四边形,B=140,可求得D,然后由圆周角定理,即可求得答案【解答】解:四边形ABCD是O的内接四边形,B=140,D=180B=40,AOC=2D=80故答案为:8012将二次函数y=x24x+5化成y=(xh)2+k的形式,则y=(x2)2+1【考点】二次函数的三种形式【分析】将二次函数y=x24x+5的右边配方即可化成y=(xh)2+k的形式【解答】解:y=x24x+5,y=x24x+44+5,y=x24x+4+1,y=(x2)2+1故答案为:y=(x2)2+113如图是44的正方形网格,点C在BAD的一边AD上,且A、B、C为格点,sinBAD的值是【考点】锐角三角函数的定义;勾股定理;勾股定理的逆定理【分析】连接BC,根据勾股定理,可求得AB,BC,AC,再根据勾股定理的逆定理,可得ABC为直角三角形,即可求得 sinBAD的值【解答】解:连接BC,根据勾股定理,可求得AB=,BC=,AC=,根据勾股定理的逆定理,可得ABC=90,sinBAD=故答案为:14如图,将函数y=(x0)的图象沿y轴向下平移3个单位后交x轴于点C若点D是平移后函数图象上一点,且BCD的面积是3,已知点B(2,0),则点D的坐标(,2)或(3,2)【考点】反比例函数系数k的几何意义;坐标与图形变化平移【分析】根据函数图象的变化规律可得变换后得到的图象对应的函数解析式为y=3,求出C点的坐标为(1,0),那么BC=3,设BCD的边BC上高为h,根据BCD的面积是3可求得h=2,从而求得D的坐标【解答】解:将函数y=(x0)的图象沿y轴向下平移3个单位后得到y=3,令y=0,得0=3,解得x=1,点C的坐标为(1,0),点B(2,0),BC=3设BCD的边BC上高为h,BCD的面积是3,3h=3,h=2,将y=2代入y=3,解得x=;将y=2代入y=3,解得x=3点D的坐标是(,2)或(3,2)故答案为(,2)或(3,2)三、(本大题共4小题,每小题6分,共24分)15计算:2sin45+(2)0tan30【考点】实数的运算;零指数幂;特殊角的三角函数值【分析】分别进行二次根式的化简、特殊角的三角函数值、零指数幂等运算,然后合并【解答】解:原式=22+1=16设x1,x2是关于x的方程x24x+k+1=0的两个实数根,是否存在实数k,使得x1x2x1+x2成立?请说明理由【考点】根与系数的关系【分析】根据方程有实数根结合根的判别式即可得出关于k的一元一次不等式,解之即可得出k的取值范围,再根据根与系数的关系结合x1x2x1+x2,即可得出关于k的一元一次不等式,解之即可得出k的取值范围,由两个k的范围无交集即可得出不存在实数k使得x1x2x1+x2成立【解答】解:不存在,理由如下:方程x24x+k+1=0有实数根,=(4)24(k+1)=124k0,k3x1,x2是关于x的方程x24x+k+1=0的两个实数根,x1+x2=4,x1x2=k+1,x1x2x1+x2,k+14,解得:k3不存在实数k使得x1x2x1+x2成立17如图,在ABC中,AB=AC,点D、E分别在BC、AB上,且BDE=CAD求证:ADEABD【考点】相似三角形的判定【分析】由等腰三角形的性质得出B=C,由三角形的外角性质和已知条件得出ADE=C,因此B=ADE,再由公共角DAE=BAD,即可得出ADEABD【解答】证明:AB=AC,B=C,ADB=C+CAD=BDE+ADE,BDE=CAD,ADE=C,B=ADE,DAE=BAD,ADEABD18如图A、B在圆上,图1中,点P在圆内;图2中,点P在圆外,请仅用无刻度的直尺按要求画图求作CDP,使CDP与ABP相似,且C、D在圆上,相似比不为1【考点】作图相似变换【分析】图1中延长AP、BP交O于C、D,连接CD即可得;图2中连接AP、BP交O于C、D两点,连接CD即可得【解答】解:如图所示,CDP即为所求四、(本大题共4小题,每小题8分,共32分)19已知:ABC在坐标平面内,三个顶点的坐标为A(0,3)、B(3,4)、C(2,2),(正方形网格中,每个小正方形边长为1个单位长度)(1)画出ABC向下平移4个单位得到的A1B1C1;(2)以B为位似中心,在网格中画出A2BC2,使A2BC2与ABC位似,且位似比2:1,直接写出C2点坐标是(1,0);(3)A2BC2的面积是10平方单位【考点】作图位似变换;作图平移变换【分析】(1)利用平移的性质得出对应点坐标进而求出即可;(2)利用位似图形的性质得出对应点位置进而得出答案;(3)利用A2BC2的形状求出其面积即可【解答】解:(1)如图所示:A1B1C1,即为所求;(2)如图所示:A2BC2即为所求,C2点坐标为(1,0);(3)A2BC2的面积位为:(2)=10平方单位故答案为:1020一枚棋子放在边长为1个单位长度的正六边形ABCDEF的顶点A处,通过摸球来确定该棋子的走法,其规则是:在一只不透明的袋子中,装有3个标号分别为1、2、3的相同小球,搅匀后从中任意摸出1个,记下标号后放回袋中并搅匀,再从中任意摸出1个,摸出的两个小球标号之和是几棋子就沿边按顺时针方向走几个单位长度棋子走到哪一点的可能性最大?求出棋子走到该点的概率(用列表或画树状图的方法求解)【考点】列表法与树状图法【分析】先画树形图:共有9种等可能的结果,其中摸出的两个小球标号之和是2的占1种,摸出的两个小球标号之和是3的占2种,摸出的两个小球标号之和是4的占3种,摸出的两个小球标号之和是5的占两种,摸出的两个小球标号之和是6的占一种;即可知道棋子走到哪一点的可能性最大,根据概率的概念也可求出棋子走到该点的概率【解答】解:画树形图:共有9种等可能的结果,其中摸出的两个小球标号之和是2的占1种,摸出的两个小球标号之和是3的占2种,摸出的两个小球标号之和是4的占3种,摸出的两个小球标号之和是5的占两种,摸出的两个小球标号之和是6的占一种;所以棋子走E点的可能性最大,棋子走到E点的概率=21已知:直角梯形OABC中,BCOA,AOC=90,以AB为直径的圆M交OC于D、E,连接AD、BD、BE(1)在不添加其他字母和线的前提下,直接写出图中的两对相似三角形(2)给出其中一对相似三角形的证明【考点】相似三角形的判定;直角梯形;圆周角定理【分析】(1)利用直角梯形的性质和圆周角定理即可证明OADCDB;ADBECB;(2)利用相似三角形的判定方法两角法:有两组角对应相等的两个三角形相似证明即可【解答】(1)解:OADCDB;ADBECB;(2)求证:;ADBECB;证明:AB为直径,ADB=90,直角梯形OABC中,BCOA,AOC=90,C=90,C=ADB=90,A=BEC,ADBECB22某学校的校门是伸缩门(如图1),伸缩门中的每一行菱形有20个,每个菱形边长为30厘米校门关闭时,每个菱形的锐角度数为60(如图2);校门打开时,每个菱形的锐角度数从60缩小为10(如图3)问:校门打开了多少米?(结果精确到1米,参考数据:sin50.0872,cos50.9962,sin100.1736,cos100.9848)【考点】解直角三角形的应用;菱形的性质【分析】先求出校门关闭时,20个菱形的宽即大门的宽;再求出校门打开时,20个菱形的宽即伸缩门的宽;然后将它们相减即可【解答】解:如图,校门关闭时,取其中一个菱形ABCD根据题意,得BAD=60,AB=0.3米在菱形ABCD中,AB=AD,BAD是等边三角形,BD=AB=0.3米,大门的宽是:0.3206(米);校门打开时,取其中一个菱形A1B1C1D1根据题意,得B1A1D1=10,A1B1=0.3米在菱形A1B1C1D1中,A1C1B1D1,B1A1O1=5,在RtA1B1O1中,B1O1=sinB1A1O1A1B1=sin50.3=0.02616(米),B1D1=2B1O1=0.05232米,伸缩门的宽是:0.0523220=1.0464米;校门打开的宽度为:61.0464=4.95365(米)故校门打开了5米五、(本大题共10分)23如图1,在ABC中,ACB=90,BC=2,A=30,点E,F分别是线段BC,AC的中点,连结EF(1)线段BE与AF的位置关系是互相垂直, =(2)如图2,当CEF绕点C顺时针旋转a时(0a180),连结AF,BE,(1)中的结论是否仍然成立如果成立,请证明;如果不成立,请说明理由(3)如图3,当CEF绕点C顺时针旋转a时(0a180),延长FC交AB于点D,如果AD=62,求旋转角a的度数【考点】几何变换综合题【分析】(1)结合已知角度以及利用锐角三角函数关系求出AB的长,进而得出答案;(2)利用已知得出BECAFC,进而得出1=2,即可得出答案;(3)过点D作DHBC于H,则DB=4(62)=22,进而得出BH=1,DH=3,求出CH=BH,得出DCA=45,进而得出答案【解答】解:(1)如图1,线段BE与AF的位置关系是互相垂直;ACB=90,BC=2,A=30,AC=2,点E,F分别是线段BC,AC的中点,=;故答案为:互相垂直;(2)(1)中结论仍然成立证明:如图2,点E,F分别是线段BC,AC的中点,EC=BC,FC=AC,=,BCE=ACF=,BECAFC,=,1=2,延长BE交AC于点O,交AF于点MBOC=AOM,1=2BCO=AMO=90BEAF;(3)如图3,ACB=90,BC=2,A=30AB=4,B=60过点D作DHBC于HDB=4(62)=22,BH=1,DH=3,又CH=2(1)=3,CH=DH,HCD=45,DCA=45,=18045=135六、(本大题共12分)24如图,二次函数y=x2+bx+c的图象与x轴交于点A(1,0),B(2,0),与y轴相交于点C(1)求二次函数的解析式;(
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 服务移交协议书范本
- 广西河池市巴马县参加广西2025届师范类毕业生就业双选会招聘教师97人公易考易错模拟试题(共500题)试卷后附参考答案
- 劳务施工安全协议书
- 公司经营利润协议书
- 出国留学进修协议书
- 广东云勇生态林养护中心事业单位招考易考易错模拟试题(共500题)试卷后附参考答案
- 区域性包销合同范本
- 危房安全管理协议书
- 博物馆研学合同范本
- 宁波市象山县人民政府金融工作办公室等2家事业单位招考易考易错模拟试题(共500题)试卷后附参考答案
- 2025年甘孜藏族自治州辅警协警招聘考试真题附答案详解(综合题)
- 2025年旅游规划与开发考试试卷及答案
- 销售工作流程与管理制度
- 2025年退伍军人事务局单位考试真题及答案合集
- 餐饮服务标准操作流程SOP模板
- 2025中考数学复习之挑战压轴题-图形的相似
- 金融业务授权管理标准体系构建
- 2025年江苏省淮安市公安辅警招聘知识考试题(含答案)
- 2025年攀枝花市仁和区事业单位秋季引才(19人)备考考试题库附答案解析
- 国际物流网络优化设计-洞察及研究
- 华为战略绩效PBC标准模板(华为)
评论
0/150
提交评论