




全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
为深入贯彻落实党的十九大精神和习近平总书记的重要指示精神,保障人民安居乐业、社会安定有序、国家长治久安、进一步巩固党的执政基础,束城镇深入贯彻全市扫黑除恶会议精神,强化措施,深入扎实开展扫黑除恶专项斗争课时分层训练(三十一) 二元一次不等式(组)与简单的线性规划问题A组基础达标(建议用时:30分钟)一、选择题1已知点(3,1)和点(4,6)在直线3x2ya0的两侧,则a的取值范围为()A(24,7)B(7,24)C(,7)(24,)D(,24)(7,)B根据题意知(92a)(1212a)0,即(a7)(a24)0,解得7a24.2不等式组所表示的平面区域的面积等于()A.B.C.D.C平面区域如图中阴影部分所示解得A(1,1),易得B(0,4),C,|BC|4,SABC1.3若x,y满足则2xy的最大值为()A0B3C4D5C根据题意作出可行域如图阴影部分所示,平移直线y2x,当直线平移到虚线处时,目标函数取得最大值,由可得A(1,2),此时2xy取最大值为2124.4不等式组的解集记为D,若(a,b)D,则z2a3b的最大值是() 【导学号:51062187】A1B4C1D4A由题意得a,b满足约束条件以a为横轴,b为纵轴建立平面直角坐标系,则不等式组表示的平面区域为以(2,0),(1,1),(2,2)为顶点的三角形区域(包含边界),由图易得当目标函数z2a3b经过平面区域内的点(1,1)时,z2a3b取得最大值zmax2(1)3(1)1,故选A.5(2017杭州适应性考试(二)若函数ykx的图象上存在点(x,y)满足约束条件则实数k的最大值为()A1B2C.D.B约束条件对应的平面区域是以点(1,2),(1,1)和(3,0)为顶点的三角形,当直线ykx经过点(1,2)时,k取得最大值2,故选B.二、填空题6设变量x,y满足约束条件则目标函数z3xy的最大值为_4根据约束条件作出可行域,如图中阴影部分所示,z3xy,y3xz,当该直线经过点A(2,2)时,z取得最大值,即zmax3224.7已知实数x,y满足则x2y2的取值范围是_根据已知的不等式组画出可行域,如图阴影部分所示,则(x,y)为阴影区域内的动点d可以看做坐标原点O与可行域内的点(x,y)之间的距离数形结合,知d的最大值是OA的长,d的最小值是点O到直线2xy20的距离由可得A(2,3),所以dmax,dmin,所以d2的最小值为,最大值为13,所以x2y2的取值范围是.8(2017浙江嘉兴第一中学能力测试)设z2xy,实数x,y满足若z的最大值是0,则实数k_,z的最小值是_44作出不等式组表示的平面区域如图所示,由图知当直线z2xy经过点A时,z取得最大值,即20,解得k4.当直线z2xy经过点B(2,k4)时,z取得最小值,所以zmin2204.三、解答题9若直线xmym0与以P(1,1),Q(2,3)为端点的线段不相交,求m的取值范围. 【导学号:51062188】解直线xmym0将坐标平面划分成两块区域,线段PQ与直线xmym0不相交,5分则点P,Q在同一区域内,于是或所以m的取值范围是m.14分10若x,y满足约束条件(1)求目标函数zxy的最值;(2)若目标函数zax2y仅在点(1,0)处取得最小值,求a的取值范围解(1)作出可行域如图,可求得A(3,4),B(0,1),C(1,0).2分平移初始直线xy0,过A(3,4)取最小值2,过C(1,0)取最大值1,所以z的最大值为1,最小值为2.8分(2)直线ax2yz仅在点(1,0)处取得最小值,由图象可知12,解得4a2.13分故所求a的取值范围为(4,2).14分B组能力提升(建议用时:15分钟)1若不等式组表示的平面区域为三角形,且其面积等于,则m的值为()A3B1C.D3B作出可行域,如图中阴影部分所示,易求A,B,C,D的坐标分别为A(2,0),B(1m,1m),C,D(2m,0)SABCSADBSADC|AD|yByC|(22m)(1m),解得m1或m3(舍去)2(2017浙江宁波十校联考)已知点A(3,),O为坐标原点,点P(x,y)满足则满足条件的点P所形成的平面区域的面积为_,的最大值是_不等式组表示的可行域是以B(2,0),O(0,0),C(1,)为顶点的三角形区域(含边界)图略,其面积为2.设向量与的夹角为,易知AOC30,AOB150,30150.又|cos ,要使取到最大值,则3090,此时0cos ,1|2,且cos 取到最大值时,|也取到最大值2,故的最大值为2.3某玩具生产公司每天计划生产卫兵、骑兵、伞兵这三种玩具共100个,生产一个卫兵需5分钟,生产一个骑兵需7分钟,生产一个伞兵需4分钟,已知总生产时间不超过10小时若生产一个卫兵可获利润5元,生产一个骑兵可获利润6元,生产一个伞兵可获利润3元(1)试用每天生产的卫兵个数x与骑兵个数y表示每天的利润(元);(2)怎样分配生产任务才能使每天的利润最大,最大利润是多少? 【导学号:51062189】解(1)依题意每天生产的伞兵个数为100xy,所以利润5x6y3(100xy)2x3y300.5分(2)约束条件为整理得8分目标函数为2x3y300,作出可行域,如图所示,作初始直线l0:2x3y0,平移l0,当l0经过点A时,有最大值,由得所以最优解为A(50,50),此时max550元故每天生产卫兵50个,骑兵50个,伞兵0个时利润最大,且最大利润为550元.15分
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 汉字的来历课件
- 云南省昆明市2024-2025学年七年级下学期期中考试地理试卷(含答案)
- 广东省湛江市第一中学2024-2025学年第一学期第三次综合素质评价(期末)试卷(含解析)
- 工地协议书范文
- 工厂厂房转让合同(6篇)
- 2024-2025学年广东省广州市番禺区高二(下)期末物理试卷(含答案)
- 《诗经》与楚辞导读知到智慧树答案
- 成都二手房买卖合同(15篇)
- 房地产誓师大会发言稿
- 汉字书法课件模板图
- 建筑公司分包合同管理办法
- 2025至2030苏打水行业发展趋势分析与未来投资战略咨询研究报告
- 2025年秋季学期德育工作计划:向下扎根向上开花
- 2025-2030中国家政服务行业信用体系建设与服务质量监管报告
- 2025年安徽省普通高中学业水平选择性考试(物理)科目高考真题+(答案解析版)
- 2025年成都东部集团有限公司及下属企业招聘考试笔试试卷【附答案】
- 各分项工程质量保证措施
- 国税编制管理办法
- 特种畜禽管理办法
- 消防员心理健康教育课件教学
- 藏族课件模板
评论
0/150
提交评论