高考数学一轮复习 第3章 三角函数解三角形 第7节 正弦定理余弦定理应用举例教师用书_第1页
高考数学一轮复习 第3章 三角函数解三角形 第7节 正弦定理余弦定理应用举例教师用书_第2页
高考数学一轮复习 第3章 三角函数解三角形 第7节 正弦定理余弦定理应用举例教师用书_第3页
高考数学一轮复习 第3章 三角函数解三角形 第7节 正弦定理余弦定理应用举例教师用书_第4页
高考数学一轮复习 第3章 三角函数解三角形 第7节 正弦定理余弦定理应用举例教师用书_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

为深入贯彻落实党的十九大精神和习近平总书记的重要指示精神,保障人民安居乐业、社会安定有序、国家长治久安、进一步巩固党的执政基础,束城镇深入贯彻全市扫黑除恶会议精神,强化措施,深入扎实开展扫黑除恶专项斗争第七节正弦定理、余弦定理应用举例1仰角和俯角在同一铅垂平面内的水平视线和目标视线的夹角,目标视线在水平视线上方时叫仰角,目标视线在水平视线下方时叫俯角(如图371)图3712方位角和方向角(1)方位角:从指北方向顺时针转到目标方向线的水平角,如B点的方位角为(如图371)(2)方向角:相对于某正方向的水平角,如南偏东30等1(思考辨析)判断下列结论的正误(正确的打“”,错误的打“”)(1)从A处望B处的仰角为,从B处望A处的俯角为,则,的关系为180.()(2)俯角是铅垂线与视线所成的角,其范围为.()(3)方位角与方向角其实质是一样的,均是确定观察点与目标点之间的位置关系()(4)如图372,为了测量隧道口AB的长度,可测量数据a,b,进行计算()图372答案(1)(2)(3)(4)2(教材改编)海面上有A,B,C三个灯塔,AB10 n mile,从A望C和B成60视角,从B望C和A成75视角,则BC等于()A10 n mileB. n mileC5 n mileD5 n mileD如图,在ABC中,AB10,A60,B75,C45,BC5.3若点A在点C的北偏东30,点B在点C的南偏东60,且ACBC,则点A在点B的()A北偏东15B北偏西15C北偏东10D北偏西10B如图所示,ACB90,又ACBC,CBA45,而30,90453015,点A在点B的北偏西15.4如图373,要测量底部不能到达的电视塔的高度,选择甲、乙两观测点在甲、乙两点测得塔顶的仰角分别为45,30,在水平面上测得电视塔与甲地连线及甲、乙两地连线所成的角为120,甲、乙两地相距500 m,则电视塔的高度是()A100 mB400 mC200 mD500 m图373D设塔高为x m,则由已知可得BCx m,BDx m,由余弦定理可得BD2BC2CD22BCCDcos BCD,即3x2x25002500x,解得x500(m)5如图374,已知A,B两点分别在河的两岸,某测量者在点A所在的河岸边另选定一点C,测得AC50 m,ACB45,CAB105,则A,B两点的距离为()A50 mB25 mC25 mD50 m图374D因为ACB45,CAB105,所以B30.由正弦定理可知,即,解得AB50 m测量距离问题如图375,从气球A上测得正前方的河流的两岸B,C的俯角分别为67,30,此时气球的高是46 m,则河流的宽度BC约等于_m(用四舍五入法将结果精确到个位参考数据:sin 670.92,cos 670.39,sin 370.60,cos 370.80,1.73)图37560如图所示,过A作ADCB且交CB的延长线于D.在RtADC中,由AD46 m,ACB30得AC92 m.在ABC中,BAC673037,ABC18067113,AC92 m,由正弦定理,得,即,解得BC60(m)规律方法应用解三角形知识解决实际问题需要下列三步:(1)根据题意,画出示意图,并标出条件;(2)将所求问题归结到一个或几个三角形中(如本例借助方位角构建三角形),通过合理运用正、余弦定理等有关知识正确求解;(3)检验解出的结果是否符合实际意义,得出正确答案变式训练1江岸边有一炮台高30 m,江中有两条船,船与炮台底部在同一水平面上,由炮台顶部测得俯角分别为45和60,而且两条船与炮台底部连线成30角,则两条船相距_m. 【导学号:51062125】10如图,OMAOtan 4530(m),ONAOtan 303010(m),在MON中,由余弦定理得,MN10(m)测量高度问题如图376,一辆汽车在一条水平的公路上向正西行驶,到A处时测得公路北侧一山顶D在西偏北30的方向上,行驶600 m后到达B处,测得此山顶在西偏北75的方向上,仰角为30,则此山的高度CD_m.图376100由题意,在ABC中,BAC30,ABC18075105,故ACB45.又AB600 m,故由正弦定理得,解得BC300 m.在RtBCD中,CDBCtan 30300100(m)规律方法1.在测量高度时,要准确理解仰角、俯角的概念,仰角和俯角都是在同一铅垂面内,视线与水平线的夹角2分清已知条件与所求,画出示意图;明确在哪个三角形内运用正、余弦定理,有序地解相关的三角形,并注意综合运用方程、平面几何、立体几何等知识变式训练2如图377,从某电视塔CO的正东方向的A处,测得塔顶的仰角为60,在电视塔的南偏西60的B处测得塔顶的仰角为45,AB间的距离为35米,则这个电视塔的高度为_米. 【导学号:51062126】图3775如图,可知CAO60,AOB150,OBC45,AB35米设OCx米,则OAx米,OBx米在ABO中,由余弦定理,得AB2OA2OB22OAOBcos AOB,即352x2x2cos 150,整理得x5,所以此电视塔的高度是5米测量角度问题在海岸A处,发现北偏东45方向、距离A处(1)海里的B处有一艘走私船;在A处北偏西75方向、距离A处2海里的C处的缉私船奉命以10海里/小时的速度追截走私船同时,走私船正以10海里/小时的速度从B处向北偏东30方向逃窜,问缉私船沿什么方向能最快追上走私船?最少要花多长时间?解设缉私船t小时后在D处追上走私船,则有CD10t,BD10t.在ABC中,AB1,AC2,BAC120.4分根据余弦定理,可得BC,由正弦定理,得sinABCsinBAC,ABC45,因此BC与正北方向垂直.8分于是CBD120.在BCD中,由正弦定理,得sinBCD,BCD30,又,即,得t.当缉私船沿北偏东60的方向能最快追上走私船,最少要花小时.14分规律方法解决测量角度问题的注意事项(1)首先应明确方位角或方向角的含义(2)分析题意,分清已知与所求,再根据题意画出正确的示意图,这是最关键、最重要的一步(3)将实际问题转化为解三角形的问题后,注意正弦、余弦定理的“联袂”使用变式训练3如图378,位于A处的信息中心获悉:在其正东方向相距40海里的B处有一艘渔船遇险,在原地等待营救信息中心立即把消息告知在其南偏西30、相距20海里的C处的乙船,现乙船朝北偏东的方向沿直线CB前往B处救援,求cos 的值图378解在ABC中,AB40,AC20,BAC120,由余弦定理得,BC2AB2AC22ABACcos 1202 800BC20.4分由正弦定理,得sinACBsinBAC.8分由BAC120,知ACB为锐角,则cosACB.由ACB30,得cos cos(ACB30)sinACB sin 30.14分思想与方法解三角形应用题的两种情形(1)已知量与未知量全部集中在一个三角形中,可用正弦定理或余弦定理求解(2)已知量与未知量涉及到两个或两个以上的三角形,这时需作出这些三角形,先解够条件的三角形,然后逐步求解其他三角形,有时需设出未知量,从几个三角形中列出方程(组),解方程(组)得出所要求的解易错与防范1“方位角”与“方向角”的区别:方位角大小的范围是0,2),方向角大小的范围一般是.2在实际问题中,可能会遇到空间与平面(地面)同时研究的问题,这时最好画两个图形,一个空间图形,一个平面图形,这样处理起来既清楚又不容易出现错误课时分层训练(二十一)正弦定理、余弦定理应用举例A组基础达标(建议用时:30分钟)一、选择题1如图379所示,已知两座灯塔A和B与海洋观察站C的距离都等于a km,灯塔A在观察站C的北偏东20,灯塔B在观察站C的南偏东40,则灯塔A与灯塔B的距离为()图379Aa km B.a kmC.a kmD2a kmB在ABC中,ACBCa,ACB120,AB2a2a22a2cos 1203a2,ABa.2如图3710,两座灯塔A和B与海岸观察站C的距离相等,灯塔A在观察站南偏西40,灯塔B在观察站南偏东60,则灯塔A在灯塔B的() 【导学号:51062127】图3710A北偏东10B北偏西10C南偏东80D南偏西80D由条件及题图可知,AB40,又BCD60,所以CBD30,所以DBA10,因此灯塔A在灯塔B南偏西80.3一艘海轮从A处出发,以每小时40海里的速度沿南偏东40的方向直线航行,30分钟后到达B处,在C处有一座灯塔,海轮在A处观察灯塔,其方向是南偏东70,在B处观察灯塔,其方向是北偏东65,那么B,C两点间的距离是()A10海里B10海里C20海里D20海里A如图所示,易知,在ABC中,AB20海里,CAB30,ACB45,根据正弦定理得,解得BC10(海里)4如图3711,一条河的两岸平行,河的宽度d0.6 km,一艘客船从码头A出发匀速驶往河对岸的码头B.已知AB1 km,水的流速为2 km/h,若客船从码头A驶到码头B所用的最短时间为6 min,则客船在静水中的速度为 ()图3711A8 km/hB6 km/hC2 km/hD10 km/hB设AB与河岸线所成的角为,客船在静水中的速度为v km/h,由题意知,sin ,从而cos ,所以由余弦定理得2212221,解得v6.5如图3712,两座相距60 m的建筑物AB,CD的高度分别为20 m、50 m,BD为水平面,则从建筑物AB的顶端A看建筑物CD的张角为 ()图3712A30 B45C60D75B依题意可得AD20(m),AC30(m),又CD50(m),所以在ACD中,由余弦定理得cosCAD,又0CAD180,所以CAD45,所以从顶端A看建筑物CD的张角为45.二、填空题6在地上画一个BDA60,某人从角的顶点D出发,沿角的一边DA行走10米后,拐弯往另一方向行走14米正好到达BDA的另一边BD上的一点,我们将该点记为点B,则B与D之间的距离为_米. 【导学号:51062128】16如图所示,设BDx m,则142102x2210xcos 60,整理得x210x960,x6(舍去),x16,x16(米)7如图3713,为测得河对岸塔AB的高,先在河岸上选一点C,使C在塔底B的正东方向上,测得点A的仰角为60,再由点C沿北偏东15方向走10米到位置D,测得BDC45,则塔AB的高是_米. 【导学号:51062129】图371310在BCD中,CD10,BDC45,BCD1590105,DBC30,BC10.在RtABC中,tan 60,ABBCtan 6010(米)8如图3714所示,一艘海轮从A处出发,测得灯塔在海轮的北偏东15方向,与海轮相距20海里的B处,海轮按北偏西60的方向航行了30分钟后到达C处,又测得灯塔在海轮的北偏东75的方向,则海轮的速度为_海里/分钟图3714由已知得ACB45,B60,由正弦定理得,所以AC10,所以海轮航行的速度为(海里/分钟)三、解答题9某航模兴趣小组的同学,为了测定在湖面上航模航行的速度,采用如下办法:在岸边设置两个观察点A,B,且AB长为80米,当航模在C处时,测得ABC105和BAC30,经过20秒后,航模直线航行到D处,测得BAD90和ABD45.请你根据以上条件求出航模的速度(答案可保留根号)图3715解在ABD中,BAD90,ABD45,ADB45,ADAB80,BD80.4分在ABC中,BC40.8分在DBC中,DC2DB2BC22DBBCcos 60(80)2(40)2280409 600.DC40,航模的速度v2米/秒. 14分10如图3716,渔船甲位于岛屿A的南偏西60方向的B处,且与岛屿A相距12海里,渔船乙以10海里/小时的速度从岛屿A出发沿正北方向航行,若渔船甲同时从B处出发沿北偏东的方向追赶渔船乙,刚好用2小时追上图3716(1)求渔船甲的速度;(2)求sin 的值. 【导学号:51062130】解(1)依题意知,BAC120,AB12,AC10220,BCA.4分在ABC中,由余弦定理,得BC2AB2AC22ABACcosBAC12220221220cos 120784,解得BC28.所以渔船甲的速度为14海里/小时.8分(2)在ABC中,因为AB12,BAC120,BC28,BCA,由正弦定理,得,10分即sin .14分B组能力提升(建议用时:15分钟)1一个大型喷水池的中央有一个强力喷水柱,为了测量喷水柱喷出的水柱的高度,某人在喷水柱正西方向的点A测得水柱顶端的仰角为45,沿点A向北偏东30前进100 m到达点B,在B点测得水柱顶端的仰角为30,则水柱的高度是 ()A50 mB100 mC120 mD150 mA设水柱高度是h m,水柱底端为C,则在ABC中,A60,ACh,AB100,BCh,根据余弦定理得,(h)2h210022h100cos 60,即h250h5 0000,即(h50)(h100)0,即h50,故水柱的高度是50 m2如图3717,为测量山高MN,选择A和另一座山的山顶C为测量观测点从A点测得M点的仰角MAN60,C点的仰角CAB

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论