中考数学一轮复习 第15讲《二次函数综合应用》练习_第1页
中考数学一轮复习 第15讲《二次函数综合应用》练习_第2页
中考数学一轮复习 第15讲《二次函数综合应用》练习_第3页
中考数学一轮复习 第15讲《二次函数综合应用》练习_第4页
中考数学一轮复习 第15讲《二次函数综合应用》练习_第5页
已阅读5页,还剩19页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

为深入贯彻落实党的十九大精神和习近平总书记的重要指示精神,保障人民安居乐业、社会安定有序、国家长治久安、进一步巩固党的执政基础,束城镇深入贯彻全市扫黑除恶会议精神,强化措施,深入扎实开展扫黑除恶专项斗争2017年中考数学一轮复习第15讲二次函数综合应用【考点解析】知识点一、二次函数与一次函数及反比例函数的结合【例题】(2016贵州毕节3分)一次函数y=ax+b(a0)与二次函数y=ax2+bx+c(a0)在同一平面直角坐标系中的图象可能是()A B C D【考点】二次函数的图象;一次函数的图象【分析】本题可先由一次函数y=ax+b图象得到字母系数的正负,再与二次函数y=ax2+bx+c的图象相比较看是否一致【解答】解:A、由抛物线可知,a0,由直线可知,故本选项错误;B、由抛物线可知,a0,x=0,得b0,由直线可知,a0,b0,故本选项错误;C、由抛物线可知,a0,x=0,得b0,由直线可知,a0,b0,故本选项正确;D、由抛物线可知,a0,x=0,得b0,由直线可知,a0,b0故本选项错误故选C【变式】已知二次函数y=ax2+bx+c(a,b,c是常数,且a0)的图象如图所示,则一次函数y=cx+与反比例函数y=在同一坐标系内的大致图象是()【答案】D【解析】抛物线开口向上,a0,抛物线的对称轴为直线x=-0,b0,抛物线与y轴的交点在x轴下方,c0,一次函数y=cx+的图象过第一、二、四象限,反比例函数y=分布在第一、三象限故选D知识点二、二次函数与一元二次方程【例题】(2016四川泸州)若二次函数y=2x24x1的图象与x轴交于A(x1,0)、B(x2,0)两点,则+的值为【考点】抛物线与x轴的交点【分析】设y=0,则对应一元二次方程的解分别是点A和点B的横坐标,利用根与系数的关系即可求出+的值【解答】解:设y=0,则2x24x1=0,一元二次方程的解分别是点A和点B的横坐标,即x1,x2,x1+x2=2,x1,x2=,+=,原式=,故答案为:【变式】二次函数y=x2+bx的图象如图,对称轴为直线x=1,若关于x的一元二次方程x2+bx-t=0(t为实数)在-1x4的范围内有解,则t的取值范围是()At-1 B-1t3 C-1t8 D3t8【答案】C.【解析】对称轴为直线x=-=1,解得b=-2,所以,二次函数解析式为y=x2-2x,=(x-1)2-1,x=-1时,y=1+2=3,x=4时,y=16-24=8,x2+bx-t=0相当于y=x2+bx与直线y=t的交点的横坐标,当-1t8时,在-1x4的范围内有解故选:C知识点三 利用二次函数解决抛物线形问题【例题】(2015浙江金华)图2是图1中拱形大桥的示意图,桥拱与桥面的交点为O,B,以点O为原点,水平直线OB为x轴,建立平面直角坐标系,桥的拱形可近似看成抛物线,桥拱与桥墩AC的交点C恰好在水面,有ACx轴,若OA=10米,则桥面离水面的高度AC为( )A米 B米 C米 D米【答案】B【分析】主要是利用抛物线的解析式以及OA=10来进行解答,关键是根据图象确定A点的坐标,从而确定C点的横坐标,继而得到问题的答案【解析】ACx轴,OA=10米,点C的横坐标为10,当x=10时,=,C(10,),桥面离水面的高度AC为m故选B【点评】本题考查了利用函数图象上的点来解决实际问题中的距离问题,能正确地确定点的坐标是解决问题的关键【方法技巧规律】利用二次函数解决抛物线形问题,一般是先根据实际问题的特点建立直角坐标系,设出合适的二次函数的解析式,把实际问题中已知条件转化为点的坐标,代入解析式求解,最后要把求出的结果转化为实际问题的答案 【变式】(2015铜仁市)(第3题)河北省赵县的赵州桥的桥拱是近似的抛物线形,建立如图所示的平面直角坐标系,其函数的关系式为y=x2,当水面离桥拱顶的高度DO是4m时,这时水面宽度AB为()A. 20m B. 10m C. 20m D. 10m【解析】二次函数的应用. 根据题意,把y=4直接代入解析式即可解答【解答】解:根据题意B的纵坐标为4,把y=4代入y=x2,得x=10,A(10,4),B(10,4),AB=20m即水面宽度AB为20m故选C【点评】本题考查了点的坐标的求法及二次函数的实际应用此题为数学建模题,借助二次函数解决实际问题知识点四、二次函数的应用【例题】(2016湖北随州9分)九年级(3)班数学兴趣小组经过市场调查整理出某种商品在第x天(1x90,且x为整数)的售价与销售量的相关信息如下已知商品的进价为30元/件,设该商品的售价为y(单位:元/件),每天的销售量为p(单位:件),每天的销售利润为w(单位:元)时间x(天)1306090每天销售量p(件)1981408020(1)求出w与x的函数关系式;(2)问销售该商品第几天时,当天的销售利润最大?并求出最大利润;(3)该商品在销售过程中,共有多少天每天的销售利润不低于5600元?请直接写出结果【考点】二次函数的应用;一元一次不等式的应用【分析】(1)当0x50时,设商品的售价y与时间x的函数关系式为y=kx+b,由点的坐标利用待定系数法即可求出此时y关于x的函数关系式,根据图形可得出当50x90时,y=90再结合给定表格,设每天的销售量p与时间x的函数关系式为p=mx+n,套入数据利用待定系数法即可求出p关于x的函数关系式,根据销售利润=单件利润销售数量即可得出w关于x的函数关系式;(2)根据w关于x的函数关系式,分段考虑其最值问题当0x50时,结合二次函数的性质即可求出在此范围内w的最大值;当50x90时,根据一次函数的性质即可求出在此范围内w的最大值,两个最大值作比较即可得出结论;(3)令w5600,可得出关于x的一元二次不等式和一元一次不等式,解不等式即可得出x的取值范围,由此即可得出结论【解答】解:(1)当0x50时,设商品的售价y与时间x的函数关系式为y=kx+b(k、b为常数且k0),y=kx+b经过点(0,40)、(50,90),解得:,售价y与时间x的函数关系式为y=x+40;当50x90时,y=90售价y与时间x的函数关系式为y=由书记可知每天的销售量p与时间x成一次函数关系,设每天的销售量p与时间x的函数关系式为p=mx+n(m、n为常数,且m0),p=mx+n过点(60,80)、(30,140),解得:,p=2x+200(0x90,且x为整数),当0x50时,w=(y30)p=(x+4030)(2x+200)=2x2+180x+2000;当50x90时,w=(9030)(2x+200)=120x+12000综上所示,每天的销售利润w与时间x的函数关系式是w=(2)当0x50时,w=2x2+180x+2000=2(x45)2+6050,a=20且0x50,当x=45时,w取最大值,最大值为6050元当50x90时,w=120x+12000,k=1200,w随x增大而减小,当x=50时,w取最大值,最大值为6000元60506000,当x=45时,w最大,最大值为6050元即销售第45天时,当天获得的销售利润最大,最大利润是6050元(3)当0x50时,令w=2x2+180x+20005600,即2x2+180x36000,解得:30x50,5030+1=21(天);当50x90时,令w=120x+120005600,即120x+64000,解得:50x53,x为整数,50x53,5350=3(天)综上可知:21+3=24(天),故该商品在销售过程中,共有24天每天的销售利润不低于5600元【变式】(2016湖北武汉10分)某公司计划从甲、乙两种产品中选择一种生产并销售,每年产销x件已知产销两种产品的有关信息如下表:产品每件售价(万元)每件成本(万元)每年其他费用(万元)每年最大产销量(件)甲6a20200乙2010400.05x280其中a为常数,且3a5(1) 若产销甲、 乙两种产品的年利润分别为y1万元、y2万元,直接写出y1、y2与x的函数关系式; (2)分别求出产销两种产品的最大年利润;(3)为获得最大年利润,该公司应该选择产销哪种产品?请说明理由【考点】二次函数的应用,一次函数的应用【答案】 (1)y1=(6-a)x-20(0x200),y2=-0.05x+10x-40(0x80);(2) 产销甲种产品的最大年利润为(1180-200a)万元,产销乙种产品的最大年利润为440万元;(3)当3a3.7时,选择甲产品;当a=3.7时,选择甲乙产品;当3.7a5时,选择乙产品【解析】解:(1) y1=(6-a)x-20(0x200),y2=-0.05x+10x-40(0x80);(2)甲产品:3a5,6-a0,y1随x的增大而增大当x200时,y1max1180200a(3a5)乙产品:y2=-0.05x+10x-40(0x80)当0x80时,y2随x的增大而增大当x80时,y2max440(万元)产销甲种产品的最大年利润为(1180-200a)万元,产销乙种产品的最大年利润为440万元;(3)1180200440,解得3a3.7时,此时选择甲产品;1180200440,解得a=3.7时,此时选择甲乙产品;1180200440,解得3.7a5时,此时选择乙产品当3a3.7时,生产甲产品的利润高;当a=3.7时,生产甲乙两种产品的利润相同;当3.7a5时,上产乙产品的利润高知识点五、二次函数在几何图形中的应用【例题】(2016湖北武汉12分)抛物线yax2c与x轴交于A、B两点,顶点为C,点P为抛物线上,且位于x轴下方 (1)如图1,若P(1,3)、B(4,0), 求该抛物线的解析式; 若D是抛物线上一点,满足DPOPOB,求点D的坐标;(2) 如图2,已知直线PA、PB与y轴分别交于E、F两点当点P运动时,是否为定值?若是,试求出该定值;若不是,请说明理由【考点】二次函数综合;考查了待定系数法求函数解析式;平行线的判定;函数值相等的点关于对称轴对称。【答案】 (1)yx2-;点D的坐标为(-1,-3)或(,);(2)是定值,等于2【解析】解:(1)将P(1,3)、B(4,0)代入yax2c得 ,解得 ,抛物线的解析式为: 如图:由DPOPOB得DPOB,D与P关于y轴对称,P(1,3)得D(-1,-3);如图,D在P右侧,即图中D2,则D2POPOB,延长PD2交x轴于Q,则QOQP,设Q(q,0),则(q1)232q2,解得:q5,Q(5,0),则直线PD2为 ,再联立 得:x1或 , D2( )点D的坐标为(-1,-3)或( )(2)设B(b,0),则A(-b,0)有ab2c0,b2,过点P(x0,y0)作PHAB,有,易证:PAHEAO,则 即,同理得,则OEOF ,又OCc,. 是定值,等于2【变式】(2016吉林10分)如图,在等腰直角三角形ABC中,BAC=90,AC=8cm,ADBC于点D,点P从点A出发,沿AC方向以cm/s的速度运动到点C停止,在运动过程中,过点P作PQAB交BC于点Q,以线段PQ为边作等腰直角三角形PQM,且PQM=90(点M,C位于PQ异侧)设点P的运动时间为x(s),PQM与ADC重叠部分的面积为y(cm2)(1)当点M落在AB上时,x=4;(2)当点M落在AD上时,x=;(3)求y关于x的函数解析式,并写出自变量x的取值范围【考点】三角形综合题【分析】(1)当点M落在AB上时,四边形AMQP是正方形,此时点D与点Q重合,由此即可解决问题(2)如图1中,当点M落在AD上时,作PEQC于E,先证明DQ=QE=EC,由PEAD,得=,由此即可解决问题(3)分三种情形当0x4时,如图2中,设PM、PQ分别交AD于点E、F,则重叠部分为PEF,当4x时,如图3中,设PM、MQ分别交AD于E、G,则重叠部分为四边形PEGQ当x8时,如图4中,则重合部分为PMQ,分别计算即可解决问题【解答】解:(1)当点M落在AB上时,四边形AMQP是正方形,此时点D与点Q重合,AP=CP=4,所以x=4故答案为4(2)如图1中,当点M落在AD上时,作PEQC于EMQP,PQE,PEC都是等腰直角三角形,MQ=PQ=PCDQ=QE=EC,PEAD,=,AC=8,PA=,x=故答案为(3)当0x4时,如图2中,设PM、PQ分别交AD于点E、F,则重叠部分为PEF,AP=x,EF=PE=x,y=SPEF=PEEF=x2当4x时,如图3中,设PM、MQ分别交AD于E、G,则重叠部分为四边形PEGQPQ=PC=8x,PM=162x,ME=PMPE=163x,y=SPMQSMEG=(8x)2(163x)2=x2+32x64当x8时,如图4中,则重合部分为PMQ,y=SPMQ=PQ2=(8x)2=x216x+64综上所述y=【典例解析】【例题1】(2011湖北随州,23,?)我市某镇的一种特产由于运输原因,长期只能在当地销售当地政府对该特产的销售投资收益为:每投入x万元,可获得利润P(万元)当地政府拟在“十二五”规划中加快开发该特产的销售,其规划方案为:在规划前后对该项目每年最多可投人100万元的销售投资,在实施规划5年的前两年中,每年都从100万元中拨出50万元用于修建一条公路,两年修成,通车前该特产只能在当地销售;公路通车后的3年中,该特产既在本地销售,也在外地销售在外地销售的投资收益为:每投入x万元,可获利润(万元)(1)若不进行开发,求5年所获利润的最大值是多少?(2)若按规划实施,求5年所获利润(扣除修路后)的最大值是多少?(3)根据(1)、(2),该方案是否具有实施价值?【解析】二次函数的应用。(1)由可获得利润P(万元),即可知当x60时,P最大,最大值为41,继而求得5年所获利润的最大值;(2)首先求得前两年的获利最大值,注意前两年:0x50,此时因为P随x的增大而增大,所以x50时,P值最大;然后后三年:设每年获利y,设当地投资额为x,则外地投资额为100x,即可得函数yP+Q(x60)2+41+x2+x+160,整理求解即可求得最大值,则可求得按规划实施,5年所获利润(扣除修路后)的最大值;(3)比较可知,该方案是具有极大的实施价值【解答】解:(1)每投入x万元,可获得利润P(万元),当x60时,所获利润最大,最大值为41万元,若不进行开发,5年所获利润的最大值是:415205(万元);(2)前两年:0x50,此时因为P随x的增大而增大,所以x50时,P值最大,即这两年的获利最大为:2(5060)2+4180(万元),后三年:设每年获利y,设当地投资额为x,则外地投资额为100x,yP+Q(x60)2+41+x2+x+160x2+60x+165(x30)2+1065,当x30时,y最大且为1065,这三年的获利最大为106533495(万元),5年所获利润(扣除修路后)的最大值是:80+34955023475(万元)(3)该方案是具有极大的实施价值【点评】此题考查了二次函数的实际应用问题解题的关键是理解题意,找到合适函数取得最大值,是解此题的关键,还要注意后三年的最大值的求解方法【例题2】(2016湖北荆门3分)若二次函数y=x2+mx的对称轴是x=3,则关于x的方程x2+mx=7的解为()Ax1=0,x2=6 Bx1=1,x2=7 Cx1=1,x2=7 Dx1=1,x2=7【考点】二次函数的性质;解一元二次方程-因式分解法【分析】先根据二次函数y=x2+mx的对称轴是x=3求出m的值,再把m的值代入方程x2+mx=7,求出x的值即可【解答】解:二次函数y=x2+mx的对称轴是x=3,=3,解得m=6,关于x的方程x2+mx=7可化为x26x7=0,即(x+1)(x7)=0,解得x1=1,x2=7故选D【例题3】(2016湖北黄石3分)以x为自变量的二次函数y=x22(b2)x+b21的图象不经过第三象限,则实数b的取值范围是()AbBb1或b1 Cb2 D1b2【分析】由于二次函数y=x22(b2)x+b21的图象不经过第三象限,所以抛物线在x轴的上方或在x轴的下方经过一、二、四象限,根据二次项系数知道抛物线开口方向向上,由此可以确定抛物线与x轴有无交点,抛物线与y轴的交点的位置,由此即可得出关于b的不等式组,解不等式组即可求解【解答】解:二次函数y=x22(b2)x+b21的图象不经过第三象限,抛物线在x轴的上方或在x轴的下方经过一、二、四象限,当抛物线在x轴的上方时,二次项系数a=1,抛物线开口方向向上,b210,=2(b2)24(b21)0,解得b;当抛物线在x轴的下方经过一、二、四象限时,设抛物线与x轴的交点的横坐标分别为x1,x2,x1+x2=2(b2)0,b210,=2(b2)24(b21)0,b20,b210,由得b,由得b2,此种情况不存在,b,故选A【点评】此题主要考查了二次函数的图象和性质,解题的关键是会根据图象的位置得到关于b的不等式组解决问题【例题4】(2016吉林10分)如图1,在平面直角坐标系中,点B在x轴正半轴上,OB的长度为2m,以OB为边向上作等边三角形AOB,抛物线l:y=ax2+bx+c经过点O,A,B三点(1)当m=2时,a=,当m=3时,a=;(2)根据(1)中的结果,猜想a与m的关系,并证明你的结论;(3)如图2,在图1的基础上,作x轴的平行线交抛物线l于P、Q两点,PQ的长度为2n,当APQ为等腰直角三角形时,a和n的关系式为 a=;(4)利用(2)(3)中的结论,求AOB与APQ的面积比【考点】二次函数综合题【分析】(1)由AOB为等边三角形,AB=2m,得出点A,B坐标,再由点A,B,O在抛物线上建立方程组,得出结论,最后代m=2,m=3,求值即可;(2)同(1)的方法得出结论(3)由APQ为等腰直角三角形,PQ的长度为2n,设A(e,d+n),P(en,d),Q(e+n,d),建立方程组求解即可;(4)由(2)(3)的结论得到m=n,再根据面积公式列出式子,代入化简即可【解答】解:(1)如图1,点B在x轴正半轴上,OB的长度为2m,B(2m,0),以OB为边向上作等边三角形AOB,AM=m,OM=m,A(m, m),抛物线l:y=ax2+bx+c经过点O,A,B三点,当m=2时,a=,当m=3时,a=,故答案为:,;(2)a=理由:如图1,点B在x轴正半轴上,OB的长度为2m,B(2m,0),以OB为边向上作等边三角形AOB,AM=m,OM=m,A(m, m),抛物线l:y=ax2+bx+c经过点O,A,B三点,a=,(3)如图2,APQ为等腰直角三角形,PQ的长度为2n,设A(e,d+n),P(en,d),Q(e+n,d),P,Q,A,O在抛物线l:y=ax2+bx+c上,化简得,2aean+b=1,化简得,2aeanb=1,化简得,an=1,a=故答案为a=,(4)OB的长度为2m,AM=m,SAOB=OBAM=2mm=m2,由(3)有,AN=nPQ的长度为2n,SAPQ=PQAN=2mn=n2,由(2)(3)有,a=,a=,=,m=n,=,AOB与APQ的面积比为3:1【中考热点】热点1:(2016辽宁丹东10分)某片果园有果树80棵,现准备多种一些果树提高果园产量,但是如果多种树,那么树之间的距离和每棵树所受光照就会减少,单棵树的产量随之降低若该果园每棵果树产果y(千克),增种果树x(棵),它们之间的函数关系如图所示(1)求y与x之间的函数关系式;(2)在投入成本最低的情况下,增种果树多少棵时,果园可以收获果实6750千克?(3)当增种果树多少棵时,果园的总产量w(千克)最大?最大产量是多少?【考点】二次函数的应用【分析】(1)函数的表达式为y=kx+b,把点(12,74),(28,66)代入解方程组即可(2)列出方程解方程组,再根据实际意义确定x的值(3)构建二次函数,利用二次函数性质解决问题【解答】解:(1)设函数的表达式为y=kx+b,该一次函数过点(12,74),(28,66),得,解得,该函数的表达式为y=0.5x+80,(2)根据题意,得,(0.5x+80)(80+x)=6750,解得,x1=10,x2=70投入成本最低x2=70不满足题意,舍去增种果树10棵时,果园可以收获果实6750千克(3)根据题意,得w=(0.5x+80)(80+x)=0.5 x2+40 x+6400=0.5(x40)2+7200a=0.50,则抛物线开口向下,函数有最大值当x=40时,w最大值为7200千克当增种果树40棵时果园的最大产量是7200千克热点2:(2016江西12分)设抛物线的解析式为y=ax2,过点B1(1,0)作x轴的垂线,交抛物线于点A1(1,2);过点B2(,0)作x轴的垂线,交抛物线于点A2;过点Bn()n1,0)(n为正整数)作x轴的垂线,交抛物线于点An,连接AnBn+1,得RtAnBnBn+1(1)求a的值;(2)直接写出线段AnBn,BnBn+1的长(用含n的式子表示);(3)在系列RtAnBnBn+1中,探究下列问题:当n为何值时,RtAnBnBn+1是等腰直角三角形?设1kmn(k,m均为正整数),问:是否存在RtAkBkBk+1与RtAmBmBm+1相似?若存在,求出其相似比;若不存在,说明理由 【考点】二次函数综合题【分析】(1)直接把点A1的坐标代入y=ax2求出a的值;(2)由题意可知:A1B1是点A1的纵坐标:则A1B1=212=2;A2B2是点A2的纵坐标:则A2B2=2()2=;则AnBn=2x2=2()n12=;B1B2=1=,B2B3=,BnBn+1=;(3)因为RtAkBkBk+1与RtAmBmBm+1是直角三角形,所以分两种情况讨论:根据(2)的结论代入所得的对应边的比列式,计算求出k与m的关系,并与1kmn(k,m均为正整数)相结合,得出两种符合条件的值,分别代入两相似直角三角形计算相似比【解答】解:(1)点A1(1,2)在抛物线的解析式为y=ax2上,a=2;(2)AnBn=2x2=2()n12=,BnBn+1=;(3)由RtAnBnBn+1是等腰直角三角形得AnBn=BnBn+1,则: =,2n3=n,n=3,当n=3时,RtAnBnBn+1是等腰直角三角形,依题意得,AkBkBk+1=AmBmBm+1=90,有两种情况:i)当RtAkBkBk+1RtAmBmBm+1时,=, =, =,所以,k=m(

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论