中考数学专项复习(10)《二次函数的应用》练习(无答案) 浙教版_第1页
中考数学专项复习(10)《二次函数的应用》练习(无答案) 浙教版_第2页
中考数学专项复习(10)《二次函数的应用》练习(无答案) 浙教版_第3页
中考数学专项复习(10)《二次函数的应用》练习(无答案) 浙教版_第4页
中考数学专项复习(10)《二次函数的应用》练习(无答案) 浙教版_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

我们在这里,召开私营企业家联谊会,借此机会,我代表成都市渝中工商局、渝中区私营企业协会,祝各位领导新年快乐、工作愉快、身体健康,祝各位企业家事业兴旺二次函数的应用(10)一、解答题1如图,在平面直角坐标系中,抛物线y=ax2+bx+与x轴交于A(3,0),B(1,0)两点与y轴交于点C,点D与点C关于抛物线的对称轴对称(1)求抛物线的解析式,并直接写出点D的坐标;(2)如图1,点P从点A出发,以每秒1个单位长度的速度沿AB匀速运动,到达点B时停止运动以AP为边作等边APQ(点Q在x轴上方),设点P在运动过程中,APQ与四边形AOCD重叠部分的面积为S,点P的运动时间为t秒,求S与t之间的函数关系式;(3)如图2,连接AC,在第二象限内存在点M,使得以M、O、A为顶点的三角形与AOC相似请直接写出所有符合条件的点M坐标2如图,已知抛物线y=(x+2)(xm)(m0)与x轴相交于点A、B,与y轴相交于点C,且点A在点B的左侧(1)若抛物线过点G(2,2),求实数m的值;(2)在(1)的条件下,解答下列问题:求出ABC的面积;在抛物线的对称轴上找一点H,使AH+CH最小,并求出点H的坐标;(3)在第四象限内,抛物线上是否存在点M,使得以点A、B、M为顶点的三角形与ACB相似?若存在,求m的值;若不存在,请说明理由3已知抛物线y=x2+bx+c与x轴交于A,B两点,与y轴交于点C,O是坐标原点,点A的坐标是(1,0),点C的坐标是(0,3)(1)求抛物线的函数表达式;(2)求直线BC的函数表达式和ABC的度数;(3)P为线段BC上一点,连接AC,AP,若ACB=PAB,求点P的坐标4如图1,在平面直角坐标系中,抛物线y=ax2+bx+3交x轴于A(1,0)和B(5,0)两点,交y轴于点C,点D是线段OB上一动点,连接CD,将线段CD绕点D顺时针旋转90得到线段DE,过点E作直线lx轴于H,过点C作CFl于F(1)求抛物线解析式;(2)如图2,当点F恰好在抛物线上时,求线段OD的长;(3)在(2)的条件下:连接DF,求tanFDE的值;试探究在直线l上,是否存在点G,使EDG=45?若存在,请直接写出点G的坐标;若不存在,请说明理由5如图,已知抛物线y=ax2+bx+c(a0)与x轴交于点A(1,0)和点B(3,0),与y轴交于点C,且OC=OB(1)求此抛物线的解析式;(2)若点E为第二象限抛物线上一动点,连接BE,CE,求四边形BOCE面积的最大值,并求出此时点E的坐标;(3)点P在抛物线的对称轴上,若线段PA绕点P逆时针旋转90后,点A的对应点A恰好也落在此抛物线上,求点P的坐标6如图,抛物线y=x2+bx+c交x轴于点A(3,0)和点B,交y轴于点C(0,3)(1)求抛物线的函数表达式;(2)若点P在抛物线上,且SAOP=4SBOC,求点P的坐标;(3)如图b,设点Q是线段AC上的一动点,作DQx轴,交抛物线于点D,求线段DQ长度的最大值7如图,在平面直角坐标系中,正方形ABCD和正方形DEFG的边长分别为2a,2b,点A,D,G在y轴上,坐标原点O为AD的中点,抛物线y=mx2过C,F两点,连接FD并延长交抛物线于点M(1)若a=1,求m和b的值;(2)求的值;(3)判断以FM为直径的圆与AB所在直线的位置关系,并说明理由8如图,在直角坐标系中,抛物线经过点A(0,4),B(1,0),C(5,0),其对称轴与x轴相交于点M(1)求抛物线的解析式和对称轴;(2)在抛物线的对称轴上是否存在一点P,使PAB的周长最小?若存在,请求出点P的坐标;若不存在,请说明理由;(3)连接AC,在直线AC的下方的抛物线上,是否存在一点N,使NAC的面积最大?若存在,请求出点N的坐标;若不存在,请说明理由9如图,直线y=x+3与x轴交于点C,与y轴交于点B,抛物线y=ax2+x+c经过B、C两点(1)求抛物线的解析式;(2)如图,点E是直线BC上方抛物线上的一动点,当BEC面积最大时,请求出点E的坐标和BEC面积的最大值?(3)在(2)的结论下,过点E作y轴的平行线交直线BC于点M,连接AM,点Q是抛物线对称轴上的动点,在抛物线上是否存在点P,使得以P、Q、A、M为顶点的四边形是平行四边形?如果存在,请直接写出点P的坐标;如果不存在,请说明理由10如图,已知直线y=x+3与x轴、y轴分别交于A,B两点,抛物线y=x2+bx+c经过A,B两点,点P在线段OA上,从点O出发,向点A以1个单位/秒的速度匀速运动;同时,点Q在线段AB上,从点A出发,向点B以个单位/秒的速度匀速运动,连接PQ,设运动时间为t秒(1)求抛物线的解析式;(2)问:当t为何值时,APQ为直角三角形;(3)过点P作PEy轴,交AB于点E,过点Q作QFy轴,交抛物线于点F,连接EF,当EFPQ时,求点F的坐标;(4)设抛物线顶点为M,连接BP,BM,MQ,问:是否存在t的值,使以B,Q,M为顶点的三角形与以O,B,P为顶点的三角形相似?若存在,请求出t的值;若不存在,请说明理由11已知,ABC在平面直角坐标系中的位置如图所示,A点坐标为(6,0),B点坐标为(4,0),点D为BC的中点,点E为线段AB上一动点,连接DE经过点A、B、C三点的抛物线的解析式为y=ax2+bx+8(1)求抛物线的解析式;(2)如图,将BDE以DE为轴翻折,点B的对称点为点G,当点G恰好落在抛物线的对称轴上时,求G点的坐标;(3)如图,当点E在线段AB上运动时,抛物线y=ax2+bx+8的对称轴上是否存在点F,使得以C、D、E、F为顶点的四边形为平行四边形?若存在,请直接写出点F的坐标;若不存在,请说明理由12抛物线y=ax2+bx+4(a0)过点A(1,1),B(5,1),与y轴交于点C(1)求抛物线的函数表达式;(2)如图1,连接CB,以CB为边作CBPQ,若点P在直线BC上方的抛物线上,Q为坐标平面内的一点,且CBPQ的面积为30,求点P的坐标;(3)如图2,O1过点A、B、C三点,AE为直径,点M为上的一动点(不与点A,E重合),MBN为直角,边BN与ME的延长线交于N,求线段BN长度的最大值13已知抛物线y=x2+bx+c经过A(1,0),B(3,0)两点,与y轴相交于点C,该抛物线的顶点为点D(1)求该抛物线的解析式及点D的坐标;(2)连接AC,CD,BD,BC,设AOC,BOC,BCD的面积分别为S1,S2和S3,用等式表示S1,S2,S3之间的数量关系,并说明理由;(3)点M是线段AB上一动点(不包括点A和点B),过点M作MNBC交AC于点N,连接MC,是否存在点M使AMN=ACM?若存在,求出点M的坐标和此时刻直线MN的解析式;若不存在,请说明理由14如图1所示,已知抛物线y=x2+4x+5的顶点为D,与x轴交于A、B两点,与y轴交于C点,E为对称轴上的一点,连接CE,将线段CE绕点E按逆时针方向旋转90后,点C的对应点C恰好落在y轴上(1)直接写出D点和E点的坐标;(2)点F为直线CE与已知抛物线的一个交点,点H是抛物线上C与F之间的一个动点,若过点H作直线HG与y轴平行,且与直线CE交于点G,设点H的横坐标为m(0m4),那么当m为何值时,SHGF:SBGF=5:6?(3)图2所示的抛物线是由y=x2+4x+5向右平移1个单位后得到的,点T(5,y)在抛物线上,点P是抛物线上O与T之间的任意一点,在线段OT上是否存在一点Q,使PQT是等腰直角三角形?若存在,求出点Q的坐标;若不存在,请说明理由15如图,在平面直角坐标系中,点O为坐标原点,直线y=kx+1(k0)与x轴交于点A,与y轴交于点C,过点C的抛物线y=ax2(6a2)x+b(a0)与直线AC交于另一点B,点B坐标为(4,3)(1)求a的值;(2)点P是射线CB上的一个动点,过点P作PQx轴,垂足为点Q,在x轴上点Q的右侧取点M,使MQ=,在QP的延长线上取点N,连接PM,AN,已知tanNAQtanMPQ=,求线段PN的长; (3)在(2)的条件下,过点C作CDAB,使点D在直线AB下方,且CD=AC,连接PD,NC,当以PN,PD,NC的长为三边长构成的三角形面积是时,在y轴左侧的抛物线上是否存在点E,连接NE,PE,使得ENP与以PN,PD,NC的长为三边长的三角形全等?若存在,求出E点坐标;若不存在,请说明理由16如图1,关于x的二次函数y=x2+bx+c经过点A(3,0),点C(0,3),点D为二次函数的顶点,DE为二次函数的对称轴,E在x轴上(1)求抛物线的解析式;(2)DE上是否存在点P到AD的距离与到x轴的距离相等?若存在求出点P,若不存在请说明理由;(3)如图2,DE的左侧抛物线上是否存在点F,使2SFBC=3SEBC?若存在求出点F的坐标,若不存在请说明理由17如图,抛物线y=ax2+bx+与直线AB交于点A(1,0),B(4,),点D是抛物线A、B两点间部分上的一个动点(不与点A、B重合),直线CD与y轴平行,交直线AB于点C,连接AD,BD(1)求抛物线的表达式;(2)设点D的横坐标为m,ADB的面积为S,求S关于m的函数关系式,并求出当S取最大值时的点C的坐标18如图,已知抛物线经过点A(4,0),B(0,4),C(6,6)(1)求抛物线的表达式;(2)证明:四边形AOBC的两条对角线互相垂直;(3)在四边形AOBC的内部能否截出面积最大的DEFG?(顶点D,E,F,G分别在线段AO,OB,BC,CA上,且不与四边形AOBC的顶点重合)若能,求出DEFG的最大面积,并求出此时点D的坐标;若不能,请说明理由19如图,二次函数y=ax2+bx+3的图象与x轴相交于点A(3,0)、B(1,0),与y轴相交于点C,点G是二次函数图象的顶点,直线GC交x轴于点H(3,0),AD平行GC交y轴于点D(1)求该二次函数的表达式;(2)求证:四边形ACHD是正方形;(3)如图2,点M(t,p)是该二次函数图象上的动点,并且点M在第二象限内,过点M的直线y=kx交二次函数的图象于另一点N若四边形ADCM的面积为S,请求出S关于t的函数表达式,并写出t的取值范围;若CMN的面积等于,请求出此时中S的值20如图,已知抛物线y=(x+2)(x4)与x轴交于点A、B(点A位于点B的左侧),与y轴交于点C,CDx轴交抛物线于点D,M为抛物线的顶点(1)求点A、B、C的坐标;(2)设动点N(2,n),求使MN+BN的值最小时n的值;(3)P是抛物线上一点,请你探究:是否存在点P,使以P、A、B为顶点的三角形与ABD相似(PAB与ABD不重合)?若存在,求出点P的坐标;若不存在,说明理由21如图,抛物线y=ax2+bx+c(a0)与x轴交于A(4,0),B(2,0),与y轴交于点C(0,2)(1)求抛物线的解析式;(2)若点D为该抛物线上的一个动点,且在直线AC上方,当以A、C、D为顶点的三角形面积最大时,求点D的坐标及此时三角形的面积;(3)以AB为直径作M,直线经过点E(1,5),并且与M相切,求该直线的解析式22如图,抛物线与x轴交于点A(,0)、点B(2,0),与y轴交于点C(0,1),连接BC(1)求抛物线的函数关系式;(2)点N为抛物线上的一个动点,过点N作NPx轴于点P,设点N的横坐标为t(t2),求ABN的面积S与t的函数关系式;(3)若t2且t0时OPNCOB,求点N的坐标23如图,抛物线y=x2+mx+n与直线y=x+3交于A,B两点,交x轴于D,C两点,连接AC,BC,已知A(0,3),C(3,0)()求抛物线的解析式和tanBAC的值;()在()条件下:(1)P为y轴右侧抛物线上一动点,连接PA,过点P作PQPA交y轴于点Q,问:是否存在点P使得以A,P,Q为顶点的三角形与ACB相似?若存在,请求出所有符合条件的点P的坐标;若不存在,请说明理由(2)设E为线段AC上一点(不含端点),连接DE,一动点M从点D出发,沿线段DE以每秒一个单位速度运动到E点,再沿线段EA以每秒个单位的速度运动到A后停止,当点E的坐标是多少时,点M在整个运动中用时最少?24如图,在平面直角坐标系中,抛物线y=ax2+x+c(a0)与x轴交于A、B两点(点A在点B的右侧),与y轴交于点C,点A的坐标为(4,0),抛物线的对称轴是直线x=(1)求抛物线的解析式;(2)M为第一象限内的抛物线上的一个点,过点M作MGx轴于点G,交AC于点H,当线段CM=CH时,求点M的坐标;(3)在(2)的条件下,将线段MG绕点G顺时针旋转一个角(090),在旋转过程中,设线段MG与抛物线交于点N,在线段GA上是否存在点P,使得以P、N、G为顶点的三角形与ABC相似?如果存在,请求出点P的坐标;如果不存在,请说明理由25阅读理解抛物线y=x2上任意一点到点(0,1)的距离与到直线y=1的距离相等,你可以利用这一性质解决问题问题解决如图,在平面直角坐标系中,直线y=kx+1与y轴交于C点,与函数y=x2的图象交于A,B两点,分别过A,B两点作直线y=1的垂线,交于E,F两点(1)写出点C的坐标,并说明ECF=90;(2)在PEF中,M为EF中点,P为动点求证:PE2+PF2=2(PM2+EM2);已知PE=PF=3,以EF为一条对角线作平行四边形CEDF,若1PD2,试求CP的取值范围26如图,在平面直角坐标系xOy中,直线y=x+2与x轴交于点A,与y轴交于点C抛物线y=ax2+bx+c的对称轴是x=且经过A、C两点,与x轴的另一交点为点B(1)直接写出点B的坐标;求抛物线解析式(2)若点P为直线AC上方的抛物线上的一点,连接PA,PC求PAC的面积的最大值,并求出此时点P的坐标(3)抛物线上是否存在点M,过点M作MN垂直x轴于点N,使得以点A、M、N为顶点的三角形与ABC相似?若存在,求出点M的坐标;若不存在,请说明理由27已知抛物线y=x22x+a(a0)与y轴相交于A点,顶点为M,直线y=xa分别与x轴、y轴相交于B,C两点,并且与直线MA相交于N点(1)若直线BC和抛物线有两个不同交点,求a的取值范围,并用a表示交点M,A的坐标;(2)将NAC沿着y轴翻转,若点N的对称点P恰好落在抛物线上,AP与抛物线的对称轴相交于点D,连接CD,求a的值及PCD的面积;(3)在抛物线y=x22x+a(a0)上是否存在点P,使得以P,A,C,N为顶点的四边形是平行四边形?若存在,求出点P的坐标;若不存在,请说明理由28在平面直角坐标系中,已知A、B是抛物线y=ax2(a0)上两个不同的点,其中A在第二象限,B在第一象限,(1)如图1所示,当直线AB与x轴平行,AOB=90,且AB=2时,求此抛物线的解析式和A、B两点的横坐标的乘积(2)如图2所示,在(1)所求得的抛物线上,当直线AB与x轴不平行,AOB仍为90时,A、B两点的横坐标的乘积是否为常

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论