




已阅读5页,还剩37页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第二章第二章 数学思维数学思维 思维思维 数学思维数学思维 数学思维的类型 数学思维方式数学思维方式 掌 捉 的 肺 跺 恰 喻 幸 湾 保 毯 茹 肠 痛 弹 由 妈 车 擦 谬 站 彬 刽 属 登 宛 诈 总 霞 供 升 劲 数 学 思 维 数 学 思 维 思维思维 思维是人脑对客观事物的本质及其内在规 律性联系概括的和间接的反映。思维有两 个最显著的特征,一是概括性,二是间接 性。 驯 怒 炎 缕 攻 称 规 贸 狂 炽 坤 媚 稳 灵 磁 晋 郑 唉 居 苍 樟 酋 柏 隶 肖 剃 暂 褥 水 旧 碘 获 数 学 思 维 数 学 思 维 思维的概括性 思维的概括性是指思维所反映的不是个别的事思维的概括性是指思维所反映的不是个别的事 物或事物的个别属性,而是反映一类事物所共物或事物的个别属性,而是反映一类事物所共 有的本质特征以及事物所有的普遍或必然的联有的本质特征以及事物所有的普遍或必然的联 系。系。 爽 脸 倘 佯 幸 桅 霖 颈 峙 炸 酥 本 赖 镜 钝 栏 叉 肤 捣 狡 格 茁 诱 惊 尾 妈 统 董 抄 舷 槽 吮 数 学 思 维 数 学 思 维 思维的间接性 思维的间接性是指思维不是直接地,而是通过其他事思维的间接性是指思维不是直接地,而是通过其他事 物的媒介作用来反映客观事物的。物的媒介作用来反映客观事物的。 正是由于思维具有间接性的特点,所以人们才能对那些正是由于思维具有间接性的特点,所以人们才能对那些 未曾感知过或根本无法感知的事物做出反映,从而使人未曾感知过或根本无法感知的事物做出反映,从而使人 的知识范围扩大、延伸;同样也是由于思维具有间接性的知识范围扩大、延伸;同样也是由于思维具有间接性 的特点,才使得人们能够预测未来,使行动有目的、有的特点,才使得人们能够预测未来,使行动有目的、有 计划地进行。思维的间接性是随着主体知识经验的丰富计划地进行。思维的间接性是随着主体知识经验的丰富 而发展起来的,因此,知识和经验对思维能力有重要影而发展起来的,因此,知识和经验对思维能力有重要影 响。响。 葱 走 肯 卞 苍 绎 青 榴 夜 笼 遁 尿 僻 孝 嘛 截 缝 耗 七 袒 跺 坛 嚼 徘 跳 呻 丰 巴 艾 稻 刷 旱 数 学 思 维 数 学 思 维 数学思维数学思维 数学思维是人脑和数学对象交互作用并按 照一般的思维规律认识数学本质和规律的 理性活动。具体来说,数学思维就是以数 和形及其结构关系为思维对象,以数学语 言和符号为思维的载体,并以认识发现数 学规律为目的一种思维。 富 孰 捆 怀 虐 阉 站 哦 牌 家 氛 老 详 臼 牌 犬 孪 驻 随 宗 仕 耿 以 赔 泅 匣 嚏 稗 野 踪 孙 十 数 学 思 维 数 学 思 维 数学思维既从属于一般的人类思维,具有一般思 维的特征,同时由于数学及其研究方法的特点, 数学思维又具有不同于一般思维的自身特点,表 现在思维活动是按客观存在的数学规律进行的, 具有数学的特点与操作方式。特别是作为思维载 体的数学语言的简约性和数学形式的符号化、抽 象化、结构化倾向决定了数学思维具有不同于其 他思维的独特风格。数学思维主要具有概括性、 整体性、相似性和问题性等特点。 漆 兹 枷 烹 擂 益 计 筛 灌 役 煽 零 吕 兑 温 猪 溪 掳 篇 咯 君 谣 踊 酵 沛 愧 抓 姆 杭 铸 饥 宝 数 学 思 维 数 学 思 维 概括性 数学思维的概括性比一般思维的概括性更强,这数学思维的概括性比一般思维的概括性更强,这 是由于数学思维揭示的是事物之间内在的形式结是由于数学思维揭示的是事物之间内在的形式结 构和数量关系及其规律,能够把握一类事物共有构和数量关系及其规律,能够把握一类事物共有 的数学属性。数学思维的概括性与数学知识的抽的数学属性。数学思维的概括性与数学知识的抽 象性是互为表里、互为因果的。数学思维方法、象性是互为表里、互为因果的。数学思维方法、 思维模式的形成是数学思维概括水平的重要表现思维模式的形成是数学思维概括水平的重要表现 ,概括的水平能够反映思维活动的速度、广度和,概括的水平能够反映思维活动的速度、广度和 深度、灵活程度以及创造程度。因此,提高主体深度、灵活程度以及创造程度。因此,提高主体 的数学概括水平是发展数学思维能力的重要标志的数学概括水平是发展数学思维能力的重要标志 。 甩 值 胀 谁 婚 狠 屡 巡 扳 住 柱 彦 堑 院 蹬 瘟 侦 巾 棘 纽 补 檀 象 像 玛 棕 挨 寸 付 慑 迫 磅 数 学 思 维 数 学 思 维 整体性 数学思维的整体性主要表现在它的统一性和对数 学对象基本属性的准确把握。数学科学本身是具 有统一性的,人们总是谋求新的概念、理论,把 以往看来互不相关的东西统一在同一的理论体系 中。数学思维的统一性,是就思维的宏观发展方 向而言的,它总是越来越多地抛弃对象的具体属 性,用统一的理论概括零散的事实。这样既便于 简化研究,又能洞察到对象的本质。数学思维中 对事物基本属性的把握,本质上源于数学中的公 理化方法。这种整体性的思维方式对人们思考问 题具有深远的影响。 镑 剔 薄 音 儿 轴 港 这 力 辛 喇 荐 素 签 渺 密 喉 阁 番 兴 元 篓 橙 刨 基 幌 冗 抿 请 炙 篱 烂 数 学 思 维 数 学 思 维 相似性 数学思维的相似性是思维相似律在数学思维活动 中的反映。数学思维的相似性普遍存在,在创造 性思维活动中发挥着重要作用。数学思维中到处 渗透着异中求同、同中辨异的比较、分析过程。 数学中的相似表现有几何相似、关系相似、结构 相似与实质相似、静态相似与动态相似等。数学 思维中的联想、类比、归纳和猜想等都是运用相 似性探求数学规律、发现数学结论的主导方法。 对相似因素和相似关系的认识能加深理解数学对 象的内部联系和规律性,提高思维的深刻性,发 展思维的创造性。因此,相似性是数学思维的一 个重要特征。 量 燎 困 啪 孤 辆 朔 泻 猖 杏 宁 柏 祭 荒 堵 碑 霜 设 赚 返 傈 汗 共 仿 肘 咳 烛 咽 拣 敞 袭 遏 数 学 思 维 数 学 思 维 问题性 数学思维的问题性是与数学科学的问题性相关联 的。问题是数学的心脏,数学科学的起源与发展 都是由问题引起的。由于数学思维是解决数学问 题的心智活动,它总是指向问题的变换,表现为 不断地提出问题、分析问题和解决问题,使数学 思维的结果形成问题的系统和定理的序列,达到 掌握问题对象的数学特征和关系结构的目的。因 此,问题性是数学思维目的性的体现,解决问题 的活动是数学思维活动的中心。这一特点在数学 思维方面的表现比任何思维都要突出。因此,80 年代世界数学教育将“问题解决”作为其主要任 务是有道理的。 蓟 茸 颧 基 凶 涤 顽 疆 而 浪 众 奉 共 镰 豹 梁 忻 整 瀑 亡 朗 扰 徒 讨 涅 振 豌 糟 措 饺 犬 愉 数 学 思 维 数 学 思 维 数学思维的类型数学思维的类型 数学逻辑思维数学逻辑思维 数学形象思维数学形象思维 数学直觉思维数学直觉思维 雕 湍 信 圃 废 币 诅 躇 抿 瑟 敦 奴 露 谊 嚎 缓 捧 贵 强 维 灸 史 誓 叹 膛 甄 撵 耪 桔 灾 烹 获 数 学 思 维 数 学 思 维 数学逻辑思维数学逻辑思维 数学逻辑思维是指借助数学概念、判断、推理等思 维形式,通过数学符号或语言来反映数学对象的本 质和规律的一种思维。 数学逻辑思维的显著特征是抽象性和逻辑性,这是数学逻辑思维的显著特征是抽象性和逻辑性,这是 由数学本身的特点和数学学习的需要决定的。数学由数学本身的特点和数学学习的需要决定的。数学 具有严谨的逻辑体系,逻辑因素在数学中表现得最具有严谨的逻辑体系,逻辑因素在数学中表现得最 为明显。一方面,主要的数学事实按逻辑方法叙述为明显。一方面,主要的数学事实按逻辑方法叙述 或论证;大量的数学概念抽象概括的形式化、公理或论证;大量的数学概念抽象概括的形式化、公理 化;数学原理、公式、法则的推理论证高度严密等化;数学原理、公式、法则的推理论证高度严密等 。另一方面,数学学习中不仅要记住按逻辑体系组。另一方面,数学学习中不仅要记住按逻辑体系组 成的大量概念、公式、定理和法则,而且要进行概成的大量概念、公式、定理和法则,而且要进行概 念的分类、定理的证明、公式法则的推导,广泛使念的分类、定理的证明、公式法则的推导,广泛使 用各种逻辑推理和证明方法。用各种逻辑推理和证明方法。 歌 转 糯 景 葱 碗 曰 哩 挠 丑 酪 午 踞 披 莱 亲 错 宾 口 蜗 辫 伞 茬 丧 佛 猖 唐 箩 锥 万 势 析 数 学 思 维 数 学 思 维 数学形象思维数学形象思维 数学形象思维是指借助数学形象或表象, 反映数学对象的本质和规律的一种思维。 在数学形象思维中,表象与想象是两种主 要形式,其中数学表象又是数学形象思维 的基本元素。 援 拴 阂 琐 呜 衍 隅 速 毙 险 地 鱼 玖 园 姻 眼 版 厨 苍 线 懂 宫 彭 蟹 飘 携 纱 慰 狐 枉 妊 瘪 数 学 思 维 数 学 思 维 数学表象 数学表象是以往感知过的观念形象的重现。数学数学表象是以往感知过的观念形象的重现。数学 表象常常以反映事物本质联系的特定模式表象常常以反映事物本质联系的特定模式结结 构来表现。构来表现。 例如,数学中例如,数学中“球球”的形象,已是脱离了具体的的形象,已是脱离了具体的 足球、篮球、排球、乒乓球等形象,而是与定点足球、篮球、排球、乒乓球等形象,而是与定点 距离相等的空间内点的集合。显示了集合内的点距离相等的空间内点的集合。显示了集合内的点 (球面上的点)与定点(球心)之间的本质联系(球面上的点)与定点(球心)之间的本质联系 :距离相等。:距离相等。 投 僧 淑 畔 太 傀 捐 对 培 蠕 翅 阻 骤 施 序 厕 趁 究 忿 琼 瓤 裂 嘘 盅 斜 盔 岳 围 革 孵 呈 蜀 数 学 思 维 数 学 思 维 数学想象 数学想象是数学形象思维的一种重要形式数学想象是数学形象思维的一种重要形式 ,通常可分为再造性想象和创造性想象两,通常可分为再造性想象和创造性想象两 种类型。种类型。 叉 誉 匡 爵 畴 磋 何 妆 携 惠 矛 烷 墙 沉 箩 瘫 首 搂 狱 谍 邢 熏 耿 墟 瑶 躇 叮 绝 碍 卡 停 狼 数 学 思 维 数 学 思 维 再造性想象 再造性想象是根据数学语言、符号 、数学表达式或图形、图表、图解等提示,经加 工改造而形成新的数学形象的思维过程。再造性 想象有两个特征: 一个是生成的新形象虽未感知过,但并非完全由 自己创造或创新,是根据别人描述或者示意再造 出来的; 一个是新形象是头脑中原有表象经过加工改造而 成的,其中包含着个人知识与理解能力的作用, 因此又有创造的成分。 谗 赤 摈 碱 凹 瑶 悔 抛 妹 猛 请 拜 敢 茬 钎 归 成 簿 原 跳 撕 则 纺 善 琼 悄 霹 泻 运 滦 言 狐 数 学 思 维 数 学 思 维 进行再造性想象必须具备两个条件:进行再造性想象必须具备两个条件: 必须正确理解所给数学语言、符号、表必须正确理解所给数学语言、符号、表 达式、图形或图解的确切意义,以保证新达式、图形或图解的确切意义,以保证新 形象的准确与真实;形象的准确与真实; 必须以丰富的表象储备为基础,头脑中必须以丰富的表象储备为基础,头脑中 的形象表象越丰富、越鲜明,再造性想象的形象表象越丰富、越鲜明,再造性想象 就越灵活、越清晰,从而再造想象的结果就越灵活、越清晰,从而再造想象的结果 就越准确、越精密。就越准确、越精密。 海 腾 缉 瞥 遵 圣 商 硝 酣 爪 帧 榔 份 饭 赐 食 限 仔 恶 诡 月 粘 追 窒 匆 嘱 痴 聘 染 泪 约 逞 数 学 思 维 数 学 思 维 创造性想象 创造性想象是一种不依靠现成的数学 语言和数学符号的描述,也不依据现成的数学表达 式和数学图形的提示,只依据思维的目的和任务在 头脑中独立地创造出新的形象的思维过程。思维结 果的新颖、独特是创造性想象的主要特征。 钵 责 哦 事 收 暇 爷 骂 余 堕 买 巩 汝 捞 食 钞 傍 蝎 蚂 衙 捣 厅 堆 犁 宗 杀 课 谋 殃 硅 谐 怂 数 学 思 维 数 学 思 维 进行创造性想象必须具备以下三个条件:进行创造性想象必须具备以下三个条件: 必须对所研究的问题本身进行深入细致的观必须对所研究的问题本身进行深入细致的观 察,形成丰富的表象储备;察,形成丰富的表象储备; 必须对所研究的问题情境进行发散式思考,必须对所研究的问题情境进行发散式思考, 掌握有关知识和经验的丰富材料,具备高水平掌握有关知识和经验的丰富材料,具备高水平 的表象重构能力;的表象重构能力; 必须抓住契机引发想象,突破思维的障碍,必须抓住契机引发想象,突破思维的障碍, 想象出问题结果并做出逻辑上的检验。想象出问题结果并做出逻辑上的检验。 幂 基 搅 鲸 央 鹊 豆 砖 哭 拢 砌 斡 儡 秽 譬 霹 乒 醚 柑 擂 涸 截 壹 爸 袭 景 瓦 又 予 你 测 逆 数 学 思 维 数 学 思 维 创造性想象与再造性想象的区别在于:创造性想象与再造性想象的区别在于: 再造性想象可以依据给定的数学语言、符号、数再造性想象可以依据给定的数学语言、符号、数 学表达式和图形的提示而展开,思维有所遵循,而学表达式和图形的提示而展开,思维有所遵循,而 创造性想象是根据思维的目的和任务进行的形象改创造性想象是根据思维的目的和任务进行的形象改 造;造; 再造性想象的思维成果是已有的形象,而创造性再造性想象的思维成果是已有的形象,而创造性 想象的思维成果则是经过改造的数学形象的综合。想象的思维成果则是经过改造的数学形象的综合。 例如,在数学科学发展史上,罗巴切夫斯基发现非例如,在数学科学发展史上,罗巴切夫斯基发现非 欧几何的过程就是创造性想象。法国大数学家笛卡欧几何的过程就是创造性想象。法国大数学家笛卡 尔把长期分道扬镳的代数和几何联系起来而创立了尔把长期分道扬镳的代数和几何联系起来而创立了 解析几何,他借助于曲线上解析几何,他借助于曲线上“点的运动点的运动”这一想象这一想象 ,创造出变量和坐标系的新的形象,把抽象的方程,创造出变量和坐标系的新的形象,把抽象的方程 展示为直观的平面和空间图形,这也是一种创造性展示为直观的平面和空间图形,这也是一种创造性 想象。想象。 固 裹 赂 颓 询 第 驳 历 蒜 吨 喷 捶 存 震 林 攒 荷 盅 剥 榜 嫌 橱 历 放 犹 按 笛 淄 健 益 减 止 数 学 思 维 数 学 思 维 数学直觉思维数学直觉思维 数学直觉思维是以一定的知识经验为基础,通过 对数学对象作总体观察,在一瞬间顿悟到对象的 某方面的本质,从而迅速作出估断的一种思维。 数学直觉思维是一种非逻辑思维活动,是一种由 下意识(潜意识)活动参与,不受固定逻辑规则 约束,由思维主体自觉领悟事物本质的思维活动 。因此,非逻辑性是数学直觉思维的基本特征, 同时数学直觉思维还具有直接性、整体性、或然 性、不可解释性等重要特征。 亨 术 瓮 喻 鬼 危 漂 尸 蠕 尤 棠 隔 盔 忍 这 亲 壁 讲 森 锌 核 憎 则 版 称 蠢 歇 绑 玛 娘 胰 籽 数 学 思 维 数 学 思 维 直接性 数学直觉思维是直接反映数学对象、结构以及关数学直觉思维是直接反映数学对象、结构以及关 系的思维活动,这种思维活动表现为对认识对象系的思维活动,这种思维活动表现为对认识对象 的直接领悟或洞察,这是数学直觉思维的本质特的直接领悟或洞察,这是数学直觉思维的本质特 征。由于数学直觉思维的直接性,使它在时间上征。由于数学直觉思维的直接性,使它在时间上 表现为快速性,即数学直觉思维有时是在一刹那表现为快速性,即数学直觉思维有时是在一刹那 时间内完成的;由于数学直觉思维的直接性,使时间内完成的;由于数学直觉思维的直接性,使 它在过程上表现为跳跃性(或间断性),直觉思它在过程上表现为跳跃性(或间断性),直觉思 维并不按常规的逻辑规则前进,而是跳过若干中维并不按常规的逻辑规则前进,而是跳过若干中 间步骤或放过个别细节而从整体上直接把握研究间步骤或放过个别细节而从整体上直接把握研究 对象的本质和联系。对象的本质和联系。 副 柞 形 猛 哉 逗 录 孜 蒸 坑 裙 西 翘 甜 赛 吗 履 替 姚 再 咱 栏 昼 辣 小 渣 笔 整 困 韭 无 寅 数 学 思 维 数 学 思 维 整体性 是指数学直觉思维的结果是关于对象的整是指数学直觉思维的结果是关于对象的整 体性认识,尽管这并非是一幅毫无遗漏的体性认识,尽管这并非是一幅毫无遗漏的 “图画图画”,”,它的某些细节甚至可能是模糊它的某些细节甚至可能是模糊 的,但是,它却清楚地表明了事物的本质的,但是,它却清楚地表明了事物的本质 或问题的关键。或问题的关键。 辰 熄 歉 沈 株 升 岩 逐 痹 辟 残 校 伶 届 陶 迅 翁 遁 至 钦 荆 肮 宣 大 承 即 裙 迂 瞄 绅 责 肚 数 学 思 维 数 学 思 维 或然性 数学直觉思维是一种跳跃式的思维,是在数学直觉思维是一种跳跃式的思维,是在 逻辑依据不充分的前提下做出的结论,具逻辑依据不充分的前提下做出的结论,具 有猜测性。正因为如此,任何通过直觉思有猜测性。正因为如此,任何通过直觉思 维维“俘获来的战利品俘获来的战利品”就需要经过严格的就需要经过严格的 逻辑验证。采用直觉思维的目的在于迅速逻辑验证。采用直觉思维的目的在于迅速 找到事物的本质或内在联系,提出猜想,找到事物的本质或内在联系,提出猜想, 而不在于论证这个猜想。而不在于论证这个猜想。 漳 鼓 究 俞 窒 工 脑 柑 忍 顺 管 上 侵 当 绥 裳 屹 饺 玩 年 溶 含 帮 锄 票 杆 迭 督 湾 响 躲 壮 数 学 思 维 数 学 思 维 不可解释性 数学直觉思维在客观上往往给人以不可解释之感。数学直觉思维在客观上往往给人以不可解释之感。 由于直觉思维是在一刹那间完成的,、略去了许多由于直觉思维是在一刹那间完成的,、略去了许多 中间环节,思维者对其过程没有清晰的意识,所以中间环节,思维者对其过程没有清晰的意识,所以 要想对它的过程进行分析、研究和追忆,往往是十要想对它的过程进行分析、研究和追忆,往往是十 分困难的,这又使直觉思维给人一种分困难的,这又使直觉思维给人一种“神秘感神秘感” 例如,高斯曾花几年的时间证明一个算术定理,最例如,高斯曾花几年的时间证明一个算术定理,最 终获得了解决。对此他回忆说:终获得了解决。对此他回忆说:“我突然证出来了我突然证出来了 ,但这简直不是我自己努力的结果,而是由于上帝,但这简直不是我自己努力的结果,而是由于上帝 的恩赐的恩赐如同闪电那样突然出现在我脑海之中,如同闪电那样突然出现在我脑海之中, 疑团一下子被解开了,连我自己也无法说清在先前疑团一下子被解开了,连我自己也无法说清在先前 已经了解的东西与使我获得成功的东西之间是怎样已经了解的东西与使我获得成功的东西之间是怎样 联系起来的联系起来的”.”. 焰 扶 胳 腕 主 琴 恳 苗 贸 裳 懦 觉 立 恕 肘 撒 丧 夯 什 顽 吕 枚 空 沾 海 近 惩 宿 净 贸 翠 怨 数 学 思 维 数 学 思 维 数学思维的智力品质 1、数学思维的广阔性与深刻性 思维的广阔性是指思路开阔,善于全面地考虑问 题表现为在思考问题时,能全面地从多方面看 问题,着眼于事物之间的联系和关系,照顾到问 题各方面的条件 思维的广阔性是以丰富的多方面的知识经验为前 提的,只有具备大量的丰富的知识经验,才能从 事物的不同角度、不同方面全面地去考虑问题, 避免狭隘性和片面性 监 掷 撼 臣 麦 膊 汰 尿 惩 网 拒 邪 聚 阅 逃 慑 蓝 凿 琴 枝 眨 拇 老 址 馅 摧 筑 俞 异 周 汇 泅 数 学 思 维 数 学 思 维 思维的深刻性是指善于深入地思考问题,善于从 纷繁复杂的表面现象中发现最本质最核心的问题 它表现为思维活动的深刻程度和抽象程度,善于 概括归纳,逻辑抽象性强,善于分清事物的实质 ,洞察事物的本质,系统地展开理性活动,善于 深入理解现象和现象发生的原因,发现他人没有 发现过的问题,并能预见事物的发展过程,善于 系统地深入地揭示事物的本质和内在规律性关系 具有思维深刻性品质的学生,善于从简单的、 普通的、司空见惯的现象中,看出问题,从中揭 示出事物重要的规律来 估 瓮 鸽 何 尼 卓 篡 悟 枢 醛 痢 紊 蕉 译 删 隙 邻 吱 屯 褒 杰 醇 罢 嵌 豹 众 聪 梅 橇 谍 酝 汛 数 学 思 维 数 学 思 维 2、数学思维的独立性与批判性 思维的独立性是指善于独立思考、善于独 立发现问题和解决问题思维独立性是人 们进行创造活动的前提,也是创新人才必 备的思维品质思维的独立性突出地表现 为三个特点:独特性、发散性和新颖性 澡 酉 枢 挡 授 戊 油 狸 受 斡 桨 碟 靛 哪 饯 豺 削 扛 狮 敲 株 窒 歪 惊 悦 郊 叹 溢 生 诀 疯 役 数 学 思 维 数 学 思 维 思维的独立性是以思维的批判性为前提的 思维的批判性是指有分析地估价思维材料和 严密审慎地检查思维过程的品质在解题过 程中,思维的批判性特征在于有能力评价解 题思路选择得是否正确以及评价这种思路可 能导致的结果如何在教学过程中,学生思 维的批判性,表现为一种趋向,愿意进行各 种各样的检验,检验已得到的粗略结果以及 对归纳、分析和直觉的推理过程进行检验等 启 胞 嘲 粗 才 钦 杠 甘 酒 曼 涕 低 曹 茹 剔 烦 绽 振 逝 扮 硅 估 徒 毗 网 抨 俭 躁 驮 蕴 徘 遗 数 学 思 维 数 学 思 维 数学思维的批判性品质常表现为分析性、策略性、 全面性、独立性、正确性五方面的特点,这些特点 在学生解题过程中表现得尤为突出具体地, (1)分析性,即在数学思维活动中不断地分析解 决问题所依据的条件,反复验证业已拟定的假设、 计划和方案;(2)策略性,即能够根据当前任务 的需要,调动自己已有的知识经验,将它们组织为 相应的解题策略或手段,并使它们在解题中发挥作 用;(3)全面性,即在数学思维活动中能够客观 地从各个方面考虑问题,把握问题的进展情况,善 于进行自我评价,坚持正确计划,随时修改错误方 案;(4)独立性,即不为情景性暗示所左右,不 迷信权威,敢于对权威的观点提出疑问,不人云亦 云、盲目附和;(5)正确性,即思维过程严谨, 条理清晰,思维结果正确,结论实事求是 概 闰 肆 锡 裤 贴 彭 顽 驰 株 雌 鹰 腊 船 谜 革 责 戳 肃 寂 吨 蕾 饵 棍 携 绝 璃 豁 弥 劣 馆 念 数 学 思 维 数 学 思 维 3、数学思维的灵活性与敏捷性 数学思维灵活性主要是指摆脱旧的思维序列的 束缚影响,机动灵活地从一种思维过程转向另 一种思维过程 这种思维的灵活性表现为能够根据客观事物的 发展与变化,及时调整自己的思路,改变已有 的思维过程,寻找新的解决问题的方法也就 是说,数学思维的灵活性主要是学生在数学思 维活动中,思考的方向多、过程活、思维技巧 能够适时转换,即思维的应变能力强 敏 贬 伺 睬 贾 仍 缀 邮 源 伎 坊 筐 凭 耀 归 堆 藏 春 罩 干 雏 润 伶 谐 塔 娶 奖 傻 牟 磁 披 对 数 学 思 维 数 学 思 维 数学学习中思维灵活性往往表现在根据具体 条件而确定解题方向,并能随着条件的变化 而有的放矢地转化解题方法;表现在从新的 高度、新的角度看待已知知识;还表现在从 已知的数学关系中看出新的数学关系思维 的灵活性与思维的发散性有一致的地方,“ 一题多解”常作为训练发散思维和数学思维 灵活性的有效方法 思维的灵活来自于求异思维,而求异思维又 来自于迁移因为灵活性越大,思维的发散 性越好,越能多解,说明迁移的效果越显著 廓 闷 粉 昧 罪 苟 恃 款 棉 练 诞 肤 拄 舞 溜 蝇 夕 吕 喝 哎 暮 彼 掌 毗 霞 泽 砒 拦 再 两 益 盈 数 学 思 维 数 学 思 维 思维的敏捷性是指思维过程中正确前提下 思维的迅速和简捷有了思维的敏捷性, 在处理和解决问题的过程中就能根据具体 情况进行积极思考,正确做出判断并迅速 做出选择这就要求人的认知结构系统化 、结构化,具有清晰性、稳定性和可利用 性,一旦需要便能迅速而正确地进行检索 和提取 赚 邻 宝 痞 膳 腕 翠 终 介 织 闸 邱 食 擂 奏 烽 矿 蚂 著 斟 甜 巩 芬 冻 审 知 捂 耕 抛 逐 肾 橱 数 学 思 维 数 学 思 维 在数学学习中,思维的敏捷性主要表现为 能够缩短运算环节和推理过程,而这又有 赖于在正确前提下的速度训练经过练习 ,从中总结经验,进而概括出规律,并通 过应用而达到熟练的程度,从而产生思维 的敏捷性因此,敏捷性又与概括性紧密 相联,推理的缩短取决于概括,“能立即 进行概括的学生,也能立即进行推理的 缩短” 更 枚 函 惹 懈 俩 鲜 虱 贝 蔼 惟 拜 市 耗 知 踌 尉 盏 摈 窒 辉 貉 画 珐 灶 猩 狱 东 竹 擎 拥 铃 数 学 思 维 数 学 思 维 第五章 数学课堂教学艺术 数学课堂教学艺术概说 数学教学语言艺术 导入的艺术 提问的艺术 教学情境的创设艺术 遁 继 盟 超 阂 写 邢 窖 急 庐 惠 噪 碉 罕 酱 圈 丛 睫 袖 撬 袜 睹 尔 惶 摩 楞 徒 烈 鸵 歼 拂 桅 数 学 思 维 数 学 思 维 1 1 数学教学艺术概说数学教学艺术概说 一、一、 数学教学艺术的内涵数学教学艺术的内涵 数学课堂教学艺术,是指数学教师综合运用数学 教学论、数学学习论等理论,遵循数学教学规律 和学生的认知特点,在数学教学活动中,以富有 个性特色的独特的方式方法,创造性地组织数学 教学,使教学达到最佳效果的精湛的教学技巧。 它是教师学识和智慧的结晶,是教师创造性地运 用教学方式方法的升华,是教学合规律性与教学 独创性的完满结合,是求美和求真的和谐统一。 而这正是数学教学艺术的本质所在。 澡 垂 夺 藤 洽 累 掠 杀 烹 始 硝 检 错 栈 盔 喉 袁 屡 窑 硷 筋 靛 屿 渤 赢 灯 何 孩 两 盗 紊 篙 数 学 思 维 数 学 思 维 二、二、 数学教学艺术的基本特征数学教学艺术的基本特征 1 1、独创性、独创性 教育家第斯多惠曾指出:“教师必须有独创性”。 数学教学的复杂性决定了教师劳动的创造性。教 师面对的是属于变化的千差万别的学生,不可能 用刻板的公式去解决课堂上出现的各种问题,无 论是教案、内容处理、教法选择、教学手段的应 用,教学过程的组织,数学解题的指导,都需要 教师发挥自己的独创性。 钨 搪 掣 夹 妙 整 巫 跃 五 扛 序 湃 焉 照 狱
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年职业院校实习实训基地合作协议(含学生技能考核)
- 2025年度专业级直播器材租赁与全天候运维保障合同
- 2025年汽车行业展会现场展台租赁、搭建及宣传服务合同
- 2025年度预包装食品产业园区入驻企业供应链管理合同
- 2025年玉器加工与销售合作协议范本
- 2025年金融信息安全设备集中采购及运维服务合同
- 2025年大型餐饮集团员工外包与福利待遇管理协议
- 医院信息科2025年技术外包与派遣服务全面合作协议
- 2025年航空航天铸件制造与专利保护及市场推广合同
- 2025年度新能源公交车采购与运营合作协议
- 山西人文知识竞赛考试题库及答案(500题)
- 医疗器械操作规程
- 小学科学仪器室建设标准(二类)
- 5S管理知识之现场改善培训课件
- 人行道及附属工程监理细则
- 产科手术病人的护理-胎头吸引术(妇产科护理课件)
- 辅警考试公安基础知识考试真题库附答案
- 32式太极剑剑谱
- 高等教育新论复习提纲-czy
- GB/T 5118-2012热强钢焊条
- GB/T 33630-2017海上风力发电机组防腐规范
评论
0/150
提交评论