




已阅读5页,还剩27页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
一. 方阵的特征值与特征向量 二. 相似矩阵及其性质 三. 矩阵可对角化的条件 四. 实对称矩阵的对角化 第四章 矩阵的特征值与特征向量 1. 特征值与特征向量的定义 定义1: 注: 设 是 阶方阵, 若数 和 维非零列向量 ,使得 成立,则称 是方阵 的一个特征值, 为方阵 的对应于特征值 的一个特征向量。 1.定义 2.求法 3.性质 (2)特征向量 是非零列向量 (4)一个特征向量只能属于一个特征值 (3)方阵 的与特征值 对应的特征向量不唯一 是方阵 一. 方阵的特征值与特征向量 问题:单位矩阵的特征值和特征 向量? 或 已知所以齐次线性方程组有非零解 或 定义2: 数 是关于 的一个多项式,称为矩阵 的特征多项式。 2. 特征值与特征向量的求法 称为矩阵 的特征方程。 求特征值、特征向量: 把得到的特征值 代入上 式, 求齐次线性方程组的非零解 即为所求特征向量。 求出 即为特征值; 解: 第一步:写出矩阵A的特征方程,求出特征值. 第二步:对每个特征值代入齐次线性方程组 求非零解。 解: 第一步:写出矩阵A的特征方程,求出特征值. 第二步:对每个特征值代入齐次线性方程组 求非零解。 例: 求矩阵 的特征值和全部特征向量. 特征值为 齐次线性方程组为当 时, 系数矩阵 自由未知量: 令 得基础解系: 常数)是对应于的全部特征向量。 例: 求矩阵 的特征值和全部特征向量. 解: 解: 第一步:写出矩阵A的特征方程,求出特征值. 例: 求矩阵 的特征值和全部特征向量. 特征值为 第二步:对每个特征值代入齐次线性方程组 求非零解。 齐次线性方程组为当 时, 系数矩阵 自由未知量: 令 得基础解系: 常数)是对应于的全部特征向量。 齐次线性方程组为 当 时, 得基础解系 常数)是对应于 的全部特征向量。 特征值 的重数 k 对应的线性无关的特征向量的个数 ? 性质1: 若 的特征值是 , 是 的对应于 的特征向量,则 的特征值是 是任意常数) 的特征值是是正整数) 若 可逆,则 的特征值是 的特征值是 且 仍然是矩阵 分别对应于 的特征向量。 为x的多项式,则 的特征值为 3. 特征值和特征向量的性质 的特征值是是正整数) 的特征值是 性质2: 矩阵 和 的特征值相同。 定理2:设 阶方阵 的 个特征值为 则 称为矩阵A的迹。(主对角元素之和) 性质3: 幂等矩阵的特征值只有0或1。 例 : 例:设 解: (1) 设 为矩阵 的特征值,求 的特征值; 若 可逆,求 的特征值。 求: (1) 的特征值和特征向量。 (2)求可逆矩阵 ,使得 为对角阵。 例: 设矩阵 的特征值为1,2,3,求 的特征值和 自由未知量:得基础解系 得 自由未知量: 得基础解系 取 存在 本题启示: 问题:矩阵 是否唯一?矩阵 是否唯一? 2. 提供了一种求 的方法. 其中 为对角阵。 1. 通过求A的特征值,特征向量,有可能把A写成 则 定理: 设 是方阵 的 个特征值, 依次是与之对应的特征向量。 如果 各不相等, 则 线性无关。 即,方阵 的属于不同特征值的特征向量线性无关。 证明:设常数 使得 类推之,有 把上列各式合写成矩阵形式,得 等号左边第二个矩阵的行列式为Vandermonde行列式, 当 各不相同时,该行列式的值不等于零,所以存在逆矩阵。 等号两边同时右乘它的逆矩阵,有 即 又因为 为特征向量, 所以 线性无关。 推广 线性无关。 例 证由题知 反证 同一特征值的特征向量的线性组合仍是这一特征值的特征向量 分属不同特征值的特征向量的线性组合不是特征向量 定义: 矩阵的主对角线元素之和,就称为矩阵的
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 包头市2025内蒙古包头市招商投资促进局所属事业单位人才引进1人笔试历年参考题库附带答案详解
- 上海市2025上海应用技术大学大学生心理健康教育中心专职人员招聘2人笔试历年参考题库附带答案详解
- 2025福建晋江市市政工程建设有限公司权属公司招聘6人笔试参考题库附带答案详解
- 2025浙江金华金开宏业产业运营管理有限公司招聘5人笔试参考题库附带答案详解
- 2025年度河南西沟电力有限责任公司招聘工作人员2名笔试参考题库附带答案详解
- 2025年安徽国控资本有限公司社会招聘17人笔试参考题库附带答案详解
- 2025年亳州公用事业发展有限公司古井供水工程项目人员招聘10人笔试参考题库附带答案详解
- 2025山东农科生物科技发展有限公司招聘16人笔试参考题库附带答案详解
- 2025四川虹微技术有限公司招聘软件开发工程师等岗位8人笔试参考题库附带答案详解
- 2025内蒙古锡林郭勒盟阿巴嘎旗城乡建设投资集团有限公司招聘12人笔试参考题库附带答案详解
- 软件工程导论课件(第六版)(张海潘编著)(1-13章)
- 光缆敷设检验批质量验收记录通用表
- 全成本管理探索与实践
- 电烙铁焊接技术培训
- 石群邱关源电路(第1至7单元)白底课件
- GB/T 40529-2021船舶与海洋技术起货绞车
- GB 31603-2015食品安全国家标准食品接触材料及制品生产通用卫生规范
- GA 392-2009警服雨衣
- 关于公布2016年度中国电力优质工程奖评审结果的通知
- 商务礼仪情景剧剧本范文(通用5篇)
- 幼教培训课件:《家园共育体系建构与实施策略》
评论
0/150
提交评论