遮阳罩连接件级进模具设计-冲压模具.docx

遮阳罩连接件级进模具设计-冲压模具含14张CAD图

收藏

资源目录
跳过导航链接。
压缩包内文档预览:(预览前20页/共81页)
预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图
编号:13542613    类型:共享资源    大小:10.21MB    格式:ZIP    上传时间:2019-01-20 上传人:QQ14****9609 IP属地:陕西
30
积分
关 键 词:
遮阳 连接 件级进 模具设计 冲压 模具 14 cad
资源描述:
遮阳罩连接件级进模具设计-冲压模具含14张CAD图,遮阳,连接,件级进,模具设计,冲压,模具,14,cad
内容简介:
国际期刊的精密工程和制造第十三卷,第7号,第1239 - 1242页。2012年7月/1239DOI:10.1007 / s12541 - 012 - 0164 6绿色替代处理技术弹簧定位销的冲压模组Myeong-Sik Jeong1, Sang-Kon Lee1, Ji Hyun Sung1, Kang-Eun Kim1, Shinok Lee2,Kang-Won Lee2, andTae-Hoon Choi1,#1绿色转型技术中心、韩国工业技术研究所,大邱,大韩民国,704 - 2302大邱韩国庆北区域划分、韩国工业技术研究所,大邱,大韩民国,704 - 230#通讯作者/电子邮件:thchoikitech.re.kr,电话:+ 82-53-580-0131 ,传真:+ 82-53-580-0130关键词:绿色制造、可持续生产、多级锻造,弹簧定位销,有限元分析在这个研究中,一个多级冷锻过程为一个弹簧定位销的冲压模组设计通过替代可持续生产过程。高能源和材料消耗过程需要转换成能量保存过程。到目前为止,一个弹簧定位销对冲压模组通常的制造加工过程为了实现较高的尺寸精度。然而,加工过程有一些缺点如过度的物质损失,低生产力和可怜的机械性能。为了克服这些问题,一个多级冷锻过程用于制造弹簧定位销来实现更少的物质损失和更高的生产力。多级锻造过程需要仔细设计措施防止缺陷的最终产品。因此,设计必须考虑材料流在整个过程和装载的压力限制,为了避免产品缺陷如折叠和填充不足。开发多级锻造工艺对弹簧导销成形载荷和材料流动在每一步都分析了使用的商业有限元变形代码。该导销由发展的多级锻造工艺制造,并与仿真结果对比。利用率也是发达锻造工艺和加工过程进行对比。发达过程是一种绿色制造工艺减少材料损耗,这可以达到降低成本通过提高材料的利用率和生产率,相比之下更能广泛使用的加工过程。手稿收到:2011年12月30日/接受:2012年1月25日1.介绍一个弹簧定位销对新闻模组通常是制造通过加工过程如切割和车削为了实现空间的精度和足够的强度。【1】然而加工过程是高能源消耗,因为它使用起来需要很多材料和时间。还需要额外的步骤如热处理以达到必要的强度。图1(b)显示了弹簧定位销通过加工过程产生的,和有关于60%的物质损失和加工过程(图1(a)。制造技术的典范是转向可持续的生产(图2)在这个时代的能源危机。可持续生产是实现通过最小化环境下影响整个生产周期的产品。这样生产设计可以通过最少的生产使用最少的材料和能源之上而产生最小数量的浪费。有多项研究会有关由于制造方法的环境影响。【2-4】图1弹簧导销由加工过程:(一)之前和(b)在加工过程图2范式转变的制造技术2012年7月国际期刊的精密工程和制造第13卷,7号,1240因此,这类能源消耗过程需要转换成一个节能过程。为了这个目的锻造过程是应用于制造弹簧定位销的实现更少的物质损失和更高的生产力。然而一个广泛蔓延的过程由两个壁垒有限:几何精度和强度不够造成的填充不足和折叠等缺陷。 这些障碍是可以克服的如果物质流是完全符合给定的几何形状。在这项研究中,多级锻造工艺对弹簧定位销的一个按模组设计考虑到材料流动使用有限元分析。设计多级锻造工艺对弹簧导杆销成形载荷和材料流动在每一步分析利用商业有限元代码变形。然后,结果会由设计的冷锻过程和原工艺效率的评估开发的过程做对比。2.设计的冷锻过程2.1发展阶段的锻造在冷镦的轴对称物体,最大应变是依赖于数量的形成阶段。为了避免等缺陷在镦粗过程与大翘曲变形,许多成形阶段需要确定基于几何的塑性变形。初始直径(D0)和长度(LT)为弹簧定位销的钢坯是24.5毫米和分别为219毫米。而破坏比s = 10 / D0是2.95塑性变形长度63.5毫米(图3)。这种情况下需要一个双冲程过程。【5】但增加为一个三阶段的过程初始阶段的头直径减少的多级成形性能冷锻过程(图4)。图3初始和目标维度对弹簧定位销图4三阶段锻造工艺对弹簧定位销2.2为有限元分析的条件弹簧定位销的材料是AISI1020,有效应力和应变之间的关系为有限元分析是与Capan and Bran的结果相符的.【6】流动应力可以表达成幂律公式,见公式(1):有限元模拟的多是采用锻造工艺一个隐式有限元代码变形。这个过程是模拟在2 d,因为它是一个轴对称变形模式。这个工件被认为是完美的塑料材料,穿孔和钢模是假定为刚性。一个剪切摩擦系数m = 0.12工件之间和穿孔是用于仿真。冲头速度是100 mm / s和工件的网格数量为3000。表1总结了仿真条件为有限元分析。图5显示了冲头的三个阶段每个阶段过程的形状。多级锻造工艺的半径R是显示在图5(d)。预成型的形状的中间阶段是决定的半径R2第二拳,半径R2决心从仿真结果考虑到装载限制和缺陷在第三阶段。2.3有限元模拟的结果图6是有限元模拟结果的第一和第二阶段锻造过程使用穿孔设计在图5。钢坯的头直径减少到22.47毫米24.5毫米后第一阶段,是证实没有缺陷如装桶和爆炸发生。钢坯的头直径减少到20.16毫米在第二阶段。预测的负载的铁分析待低于250吨装载限制的媒体图6所示(d)。然而这个预成型与R2 = 5导致折叠缺陷在第三锻造阶段如图8。这是由于物料流的在径向方向比在轴向方向更慢。表1模拟条件的有限元分析仿真模式等温几何轴对称冲压速度100 mm/s网格的数量3000摩擦值0.12图5每个穿孔的多级锻造工艺形状国际期刊的精密工程和制造第13卷,7号,2012年7月,1241图6多级锻造工艺的有限元结果图7有限元分析结果:第二穿孔R2= 5图8为第三阶段锻造的粗加工为了避免折叠缺陷的预成型几何的最后阶段需要修改,这是通过重新设计的在第二阶段冲压试验。优化设计的预制块,预成型形状与半径从5 r - 15 r,而设计和观察变形行为结果如图8所示。可以看出折叠缺陷发生在半径为R的第二次冲压低于12 r。 而当半径大于14 r的撞击载荷极限时图9总结了这个结果,多级冷锻的第二次冲压的适当半径确定为13r到12r。3.多级冷锻结果3.1工艺条件实验评估冲床和模具形状的多级锻造实验的有效性,结果如图10所示。第二次冲压的半径设置为12 r和材料的形状在每个阶段显示在图11。没有缺陷如滚磨和爆炸发生在多级锻造过程,没有裂缝和有裂缝发现在最终的产品上。但有少量的反射形成和有限元分析显示了类似的结果(图12)。这样的反射可能影响一生的弹簧定位销,需要做更多的工作最小化反射。这可以通过修改模具的几何形状来实现。图9负载在第三次冲压的函数R2图10穿孔的多级锻造工艺对弹簧定位销图11每个阶段的弹簧定位销国际期刊的精密工程和制造第13卷,7号,2012年7月,12423.2比较开发过程和原始过程表2显示了发达过程比原工艺的改进情况。当发达多级冷锻过程应用于弹簧定位销比一个冲压模组初始坯直径降低了50%,材料使用增加到100%。同样的处理能力是每分钟二百倍的原始过程。这些改进使单位成本下降了50%。换句话说,开发过程是一个节能过程,因为物质损失最小化,使生产原始材料使用减少能源、。图14显示了能量消耗金额之间加工和冷锻生产单个弹簧定位销。计算是通过使用工具与SolidWorks可持续性计算方法符合ISO 1444。当冷锻工艺应用,能源的消耗量可以减少了大约10%。这意味着,发达的过程比加工工艺过程生产弹簧导销更加绿色化。图12最终在的产品上的反射图13弹簧导销(a)和(b)锻造加工结果表2比较的发展进程和原始过程项目原始过程发展过程材料直径5025钢种A283-CAISI1020制造过程机械加工多级冷锻造物料消耗(%)40100生产率(EA/min)1200单价11/2图14原始过程和冷锻加工生产一个弹簧定位销之间能源消耗4.总结在这项研究中,多级冷锻工艺弹簧导针冲压模组开发考虑到在制造周期的节能。这个过程是设计使用铁分析和预成型形状优化的考虑到材料流和装载限制的冲压。合适的半径第二冲头是12r到13r,发达过程通过了实验验证过程的有效性。发达过程是一种绿色制造工艺不仅减少材料损失还节约能源。此外,这个过程通过高材料使用和高生产率达到降低成本相比更广泛使用于加工过程。致谢这项研究是由“在大邱和尚庆北道省技术创新的中小型制造企业” 提供技术支持。参考文献1.Boothroyd, G. and Knight, W. A., “Fundamentals of machining and machine tools,” CRC, 2006.2.Park, C. W., Kwon, K. S., Kim, W. B., Min, B. K., Park, S. J., Sung, I. H., Yoon, Y. S., Lee, K. S., Lee, J. H., and Seok, J., “Energy consumption reduction technology in manufacturing-Aselective review of policies, standards, and research,” Int. J. Precis. Eng. Manuf., Vol. 10, No. 5, pp. 151-173, 2009.3.Dahmus, J. B. and Gutowski, T. G., “An environmental analysis of machining,” Proc. of IMECE, pp. 643-652, 2004.4.Kang, Y. C., Chun, D. M., Jun, Y., and Ahn, S. H., “Computer-aided environmental design system for the energy-using product (EuP) directive,” Int. J. Precis. Eng. Manuf., Vol. 11, No. 3, pp. 397-406, 2010.5.Lange, K., “Handbook of metal forming,” McGraw-Hill Book Company, 1985.6.Capan, L. and Baran, O., “Calculation method of the press force in a round shaped closed-die forging based on similarities to indirect extrusion,” JMPT, Vol. 102, No. 1, pp. 230-233, 2000.10INTERNATIONAL JOURNAL OF PRECISION ENGINEERING AND MANUFACTURING Vol. 13, No. 7, pp. 1239-1242 JULY 2012 / 1239 DOI: 10.1007/s12541-012-0164-6 1. Introduction A spring guide pin for a press die set is usually manufactured via machining process such as cutting and turning in order to achieve dimensional accuracy and sufficient strength.1 However machining process is highly energy consuming because it uses up much material and time. Also it requires extra steps such as heat treatment in order to attain necessary strength. Fig. 1(b) shows the spring guide pin produced via machining process, and there is about 60% material loss with machining process (Fig. 1(a). The paradigm of manufacturing technology is shifting towards sustainable production (Fig. 2) in this age of energy crisis. Sustainable production is achievable by minimizing environmental effects during the whole manufacturing cycle of a product. Such production can be designed by means of minimal manufacturing that uses minimal material and energy while producing least amount of waste. There are number of research on going concerning environmental effects due to manufacturing methods.2-4 Fig. 1 Spring guide pin made by machining process: (a) before and (b) after machining process Fig. 2 Shift of paradigm in manufacturing technology Green Alternative Processing Technology for a Spring Guide Pin of Stamping Die Set Myeong-Sik Jeong1, Sang-Kon Lee1, Ji Hyun Sung1, Kang-Eun Kim1, Shinok Lee2, Kang-Won Lee2, and Tae-Hoon Choi1,# 1 Green Transformation Technology Center, Korea Institute of Industrial Technology, Daegu, Republic of Korea, 704-230 2 Daegu-Gyeongbuk Regional Division, Korea Institute of Industrial Technology, Daegu, Republic of Korea, 704-230 # Corresponding Author / E-mail: thchoikitech.re.kr, TEL: +82-53-580-0131, FAX: +82-53-580-0130 KEYWORDS: Green manufacturing, Sustainable production, Multi-stage forging, Spring guide pin, FE-analysis In this research, a multi-stage cold forging process for a spring guide pin of stamping die set is designed through alternative process for sustainable production. Highly energy and material consuming process needs to be converted to an energy saving process. Up to now, a spring guide pin for stamping die set is usually manufactured by machining process in order to achieve dimensional accuracy. However, machining process has some disadvantages such as excessive material loss, low productivity, and poor mechanical properties. In order to overcome these problems, a multi-stage cold forging process is applied to manufacturing spring guide pin for achieving less material loss and higher productivity. Multi-stage forging process requires careful design steps to prevent the defects of the final product. So, the design must consider the material flow during the whole process and the loading limit of the press in order to avoid product defects such as folding and underfilling. To develop multi-stage forging process for spring guide pin the forming load and material flow at each step is analyzed using a commercial finite element code, DEFORM. The guide pin is then manufactured by the developed multi- stage forging process, and is compared to the simulation results. Also the efficiency of the developed forging process is compared to the machining process. The developed process is a green manufacturing process minimizing material loss, which achieves cost reduction through improved material usage and productivity compared to the more widely used machining process. Manuscript received: December 30, 2011 / Accepted: January 25, 2012 KSPE and Springer 2012 1240 / JULY 2012 INTERNATIONAL JOURNAL OF PRECISION ENGINEERING AND MANUFACTURING Vol. 13, No. 7 Therefore such energy consuming process needs to be converted to an energy saving process. For this purpose forging process is applied to manufacturing the spring guide pin for achieving less material loss and higher productivity. However a wide spread of such process is limited by two barriers: the geometrical inaccuracy and the insufficient strength caused by defects such as underfills and folds. These barriers can be overcome if the material flow is fully understood for the given geometry. In this study, multi-stage forging process for spring guide pin of a press die set is designed considering the material flow using the FE-analysis. To design multi-stage forging process for spring guide pin the forming load and the material flow at each step is analysed using commercial finite element code DEFORM. Then, the result is compared to the original process for assessing the efficiency of the developed process. 2. Design of cold forging process 2.1 Development of the forging stage During cold upsetting of an axisymmetric object, the maximum strain is dependent on the number of forming stages. To avoid defects such as buckling during upsetting process with large deformation, a number of forming stage needs to be determined based on the geometry of plastic deformation. The initial diameter (D0) and length (Lt) of the billet for spring guide pin is 24.5 mm and 219 mm respectively. Also the upsetting ratio s=L0/D0 is 2.95 for plastic deformation length (L0) of 63.5 (Fig. 3). This case requires a double-stroke process.5 But to increase formability the multi-stage cold forging process is designed as a three stage process with the initial stage of head diameter reduction (Fig. 4). Fig. 3 Initial and target dimension for spring guide pin Fig. 4 Three stage forging process for spring guide pin 2.2 Condition for FE analysis The material of the spring guide pin is AISI1020, and the relationship between effective stress and strain for FE analysis is fitted from Capan and Brans results.6 The flow stress can be expressed with a power law formula as shown in equation (1): 0.297 382.434242.747=+ (1) FE simulation of the multi forging process is conducted using an implicit finite element code DEFORM. This process is modelled in 2D because it is an axisymmetric deformation mode. The workpiece is assumed to be perfect plastic material, and the punch and die are assumed to be rigid. A shear friction factor m=0.12 between workpiece and punch is used for the simulation. The punch speed is 100 mm/s and number of elements of the workpiece is 3000. Table 1 summarizes the simulation conditions for FE analysis. Fig. 5 shows the shape of punch at each stage of the three stage process. The chamber angle and radius R are shown in Fig. 5(d). The preform shape of the intermediate stage is determined by the radius R2 of the second punch, and the radius R2 is determined from the simulation results considering the loading limit and the defects during the third stage. 2.3 Results of FE simulation Fig. 6 is FE simulation results of the first and second stage forging process using the punch designed in Fig. 5. The head diameter of the billet is reduced to 22.47 mm from 24.5 mm after the first stage, and it is confirmed that no defects such as barrelling and bursting occurred. The diameter of the broker head reduced to 20.16 mm after the second stage. The predicted load from the FE analysis stayed below the 250 ton loading limit of the press as shown in Fig. 6(d). However this preform with R2=5 causes folding defect during the third forging stage as shown in Fig. 8. This is due to the slower material flow of the flange in the radial direction than in the axial direction. Table 1 Simulation condition of FE analysis Simulation mode Isothermal Geometry Axisymmetric Velocity of punch 100 mm/s Number of mesh 3000 Friction value 0.12 (a) First punch (b) Second punch (c) Third punch R1 1.5 1 72 R2 5 2 71 R3 1 (d) Dimension of punch Fig. 5 Shape of each punch for the multi-stage forging process INTERNATIONAL JOURNAL OF PRECISION ENGINEERING AND MANUFACTURING Vol. 13, No. 7 JULY 2012 / 1241 (a) Billet (b) First stage broker (c) Second stage broker (d) Predicted load of first and second stage Fig. 6 FE result of the multi-stage forging process (a) Initial (b) Stroke: 72.5 (c) Stroke: 81.8 (d) Folding defect Fig. 7 FE analysis results: Second punch R2=5 Fig. 8 Preform for 3rd stage forging To avoid folding defect the preform geometry for the final stage needs to be modified, and this is achieved by re-designing the punch in the second stage. For optimal design of the preform, the preform shape with radius from 5R to 15R is designed and observed for deformation behaviour as shown in Fig. 8. It can be seen that folding defect occurs when radius R of the second punch is below 12R. When radius is greater than 14R it hits the loading limit of the press. Fig. 9 summarizes this result, and the suitable radius for the second punch of the multi-stage cold forging is determined to be 12R to 13R. 3. Multi-Stage cold forging experiment 3.1 Process condition for Experiment To evaluate the validity of the punch and die shape, a multi- stage forging experiment is performed using the punches in Fig. 10. The radius of the second punch is set to 12R and the material shape at each stage is shown in Fig. 11. No defects such as barrelling and bursting occurred during the multi-stage forging process, and no cracks and fractures are found in the final product. But there is small amount of flash forming and FE analysis shows similar results (Fig. 12). Such flash may affect lifetime of the spring guide Fig. 9 The load at 3rd punch as a function of R2 Fig. 10 Punch of multi-stage forging process for spring guide pin Fig. 11 The spring guide pin at each stage 1242 / JULY 2012 INTERNATIONAL JOURNAL OF PRECISION ENGINEERING AND MANUFACTURING Vol. 13, No. 7 pin, and more work needs to be done to minimize the flash. This can be realized through modification of the die geometry. 3.2 Comparison of the developed process to the original process Table 2 shows the improvement of the developed process compared to the original process. When the developed multi-stage cold forging process is applied to the spring guide pin for a press die set the initial billet diameter is reduced by 50% and the material usage increases to 100%. Also the processing capacity per minute is two hundred times the original process. These improvements bring down the unit cost by 50%. In other words, the developed process is an energy saving process because it minimizes material loss and reduces energy used for producing the original material. Figure 14 shows the amount of energy consumed between machining and cold forging for producing a single spring guide pin. The calculation was done using SolidWorks Sustainability tool with computation method that complies with the ISO 1444. When the cold forging process was applied, the consumption of energy can be reduced about 10%. This means that the developed process is more green process than the machining process to manufacture the spring guide pin. 4. Summary In this study, a multi-stage cold forging process for the spring guide pin of a press die set is developed considering energy saving during the manufacturing cycle. The process is designed using FE analysis, and preform shape is optimized considering the material flow and the loading limit of the press. The suitable radius of the second punch is 12R to 13R, and the validity of the developed process is verified through experimentation. The developed process is a green manufacturing process not only minimizing material loss but also saving energy. Also this process achieves cost reduction through high material usage and high productivity compared to the more wid
温馨提示:
1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
2: 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
3.本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
提示  人人文库网所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
关于本文
本文标题:遮阳罩连接件级进模具设计-冲压模具含14张CAD图
链接地址:https://www.renrendoc.com/p-13542613.html

官方联系方式

2:不支持迅雷下载,请使用浏览器下载   
3:不支持QQ浏览器下载,请用其他浏览器   
4:下载后的文档和图纸-无水印   
5:文档经过压缩,下载后原文更清晰   
关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

网站客服QQ:2881952447     

copyright@ 2020-2025  renrendoc.com 人人文库版权所有   联系电话:400-852-1180

备案号:蜀ICP备2022000484号-2       经营许可证: 川B2-20220663       公网安备川公网安备: 51019002004831号

本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知人人文库网,我们立即给予删除!