




已阅读5页,还剩4页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
Structure in Design of ArchitectureAnd Structural MaterialWe have and the architects must deal with the spatial aspect of activity, physical, and symbolic needs in such a way that overall performance integrity is assured. Hence, he or she well wants to think of evolving a building environment as a total system of interacting and space forming subsystems. Is represents a complex challenge, and to meet it the architect will need a hierarchic design process that provides at least three levels of feedback thinking: schematic, preliminary, and final.Such a hierarchy is necessary if he or she is to avoid being confused , at conceptual stages of design thinking ,by the myriad detail issues that can distract attention from more basic considerations .In fact , we can say that an architects ability to distinguish the more basic form the more detailed issues is essential to his success as a designer .The object of the schematic feed back level is to generate and evaluate overall site-plan, activity-interaction, and building-configuration options .To do so the architect must be able to focus on the interaction of the basic attributes of the site context, the spatial organization, and the symbolism as determinants of physical form. This means that ,in schematic terms ,the architect may first conceive and model a building design as an organizational abstraction of essential performance-space in teractions.Then he or she may explore the overall space-form implications of the abstraction. As an actual building configuration option begins to emerge, it will be modified to include consideration for basic site conditions.At the schematic stage, it would also be helpful if the designer could visualize his or her options for achieving overall structural integrity and consider the constructive feasibility and economic of his or her scheme .But this will require that the architect and/or a consultant be able to conceptualize total-system structural options in terms of elemental detail .Such overall thinking can be easily fed back to improve the space-form scheme.At the preliminary level, the architects emphasis will shift to the elaboration of his or her more promising schematic design options .Here the architects structural needs will shift to approximate design of specific subsystem options. At this stage the total structural scheme is developed to a middle level of specificity by focusing on identification and design of major subsystems to the extent that their key geometric, component, and interactive properties are established .Basic subsystem interaction and design conflicts can thus be identified and resolved in the context of total-system objectives. Consultants can play a significant part in this effort; these preliminary-level decisions may also result in feedback that calls for refinement or even major change in schematic concepts.When the designer and the client are satisfied with the feasibility of a design proposal at the preliminary level, it means that the basic problems of overall design are solved and details are not likely to produce major change .The focus shifts again ,and the design process moves into the final level .At this stage the emphasis will be on the detailed development of all subsystem specifics . Here the role of specialists from various fields, including structural engineering, is much larger, since all detail of the preliminary design must be worked out. Decisions made at this level may produce feedback into Level II that will result in changes. However, if Levels I and II are handled with insight, the relationship between the overall decisions, made at the schematic and preliminary levels, and the specifics of the final level should be such that gross redesign is not in question, Rather, the entire process should be one of moving in an evolutionary fashion from creation and refinement (or modification) of the more general properties of a total-system design concept, to the fleshing out of requisite elements and details.To summarize: At Level I, the architect must first establish, in conceptual terms, the overall space-form feasibility of basic schematic options. At this stage, collaboration with specialists can be helpful, but only if in the form of overall thinking. At Level II, the architect must be able to identify the major subsystem requirements implied by the scheme and substantial their interactive feasibility by approximating key component properties .That is, the properties of major subsystems need be worked out only in sufficient depth to very the inherent compatibility of their basic form-related and behavioral interaction . This will mean a somewhat more specific form of collaboration with specialists then that in level I .At level III ,the architect and the specific form of collaboration with specialists then that providing for all of the elemental design specifics required to produce biddable construction documents .Of course this success comes from the development of the Structural Material.The principal construction materials of earlier times were wood and masonry brick, stone, or tile, and similar materials. The courses or layers were bound together with mortar or bitumen, a tar like substance, or some other binding agent. The Greeks and Romans sometimes used iron rods or claps to strengthen their building. The columns of the Parthenon in Athens, for example, have holes drilled in them for iron bars that have now rusted away. The Romans also used a natural cement called puzzling, made from volcanic ash, that became as hard as stone under water.Both steel and cement, the two most important construction materials of modern times, were introduced in the nineteenth century. Steel, basically an alloy of iron and a small amount of carbon had been made up to that time by a laborious process that restricted it to such special uses as sword blades. After the invention of the Bessemer process in 1856, steel was available in large quantities at low prices. The enormous advantage of steel is its tensile force which, as we have seen, tends to pull apart many materials. New alloys have further, which is a tendency for it to weaken as a result of continual changes in stress.Modern cement, called Portland cement, was invented in 1824. It is a mixture of limestone and clay, which is heated and then ground into a power. It is mixed at or near the construction site with sand, aggregate small stones, crushed rock, or gravel, and water to make concrete. Different proportions of the ingredients produce concrete with different strength and weight. Concrete is very versatile; it can be poured, pumped, or even sprayed into all kinds of shapes. And whereas steel has great tensile strength, concrete has great strength under compression. Thus, the two substances complement each other.They also complement each other in another way: they have almost the same rate of contraction and expansion. They therefore can work together in situations where both compression and tension are factors. Steel rods are embedded in concrete to make reinforced concrete in concrete beams or structures where tensions will develop. Concrete and steel also form such a strong bond the force that unites them that the steel cannot slip within the concrete. Still another advantage is that steel does not rust in concrete. Acid corrodes steel, whereas concrete has an alkaline chemical reaction, the opposite of acid.The adoption of structural steel and reinforced concrete caused major changes in traditional construction practices. It was no longer necessary to use thick walls of stone or brick for multistory buildings, and it became much simpler to build fire-resistant floors. Both these changes served to reduce the cost of construction. It also became possible to erect buildings with greater heights and longer spans.Since the weight of modern structures is carried by the steel or concrete frame, the walls do not support the building. They have become curtain walls, which keep out the weather and let in light. In the earlier steel or concrete frame building, the curtain walls were generally made of masonry; they had the solid look of bearing walls. Today, however, curtain walls are often made of lightweight materials such as glass, aluminum, or plastic, in various combinations.Another advance in steel construction is the method of fastening together the beams. For many years the standard method was riveting. A rivet is a bolt with a head that looks like a blunt screw without threads. It is heated, placed in holes through the pieces of steel, and a second head is formed at the other end by hammering it to hold it in place. Riveting has now largely been replaced by welding, the joining together of pieces of steel by melting a steel material between them under high heat.Priestesss concrete is an improved form of reinforcement. Steel rods are bent into the shapes to give them the necessary degree of tensile strengths. They are then used to priestess concrete, usually by one of two different methods. The first is to leave channels in a concrete beam that correspond to the shapes of the steel rods. When the rods are run through the channels, they are then bonded to the concrete by filling the channels with grout, a thin mortar or binding agent. In the other (and more common) method, the priestesses steel rods are placed in the lower part of a form that corresponds to the shape of the finished structure, and the concrete is poured around them. Priestesss concrete uses less steel and less concrete. Because it is a highly desirable material.Because foundation vertical to even to subside or horizontal direction displacement, make the structure produce the additional stress, go beyond resisting the ability of drawing of concrete structure, cause the structure to fracture. The even main reason that subside of the foundation is as follows, 1, Reconnoitres the precision and is not enough for , test the materials inaccuratly in geology. Designing, constructing without fully grasping the geological situation, this is the main reason that cause the ground not to subside evenly . Such as hills area or bridge, district of mountain ridge, hole interval to be too far when reconnoitring, and ground rise and fall big the rock, reconnoitring the report cant fully reflect the real geological situation . 2, The geological difference of the ground is too large. Building it in the bridge of the valley of the ditch of mountain area, geology of the stream place and place on the hillside change larger, even there are weak grounds in the stream, because the soil of the ground does not causes and does not subside evenly with the compressing. 3, The structure loads the difference too big. Under the unanimous terms, when every foundation too heavy to load difference in geological situation, may cause evenly to subside, for example high to fill out soil case shape in the middle part of the culvert than to is it take heavy to load both sides, to subside soon heavy than both sides middle part, case is it might fracture to contain 4, The difference of basic type of structure is great. Unite it in the bridge the samly , mix and use and does not expand the foundation and a foundation with the foundation, or adopt a foundation when a foot-path or a long difference is great at the same time , or adopt the foundation of expanding when basis elevation is widely different at the same time , may cause the ground not to subside evenly too 5, Foundation built by stages. In the newly-built bridge near the foundation of original bridge, if the half a bridge about expressway built by stages, the newly-built bridge loads or the foundation causes the soil of the ground to consolidate again while dealing with, may cause and subside the foundation of original bridge greatly 6, The ground is frozen bloatedly. The ground soil of higher moisture content on terms that lower than zero degree expands because of being icy; Once temperature goes up , the frozen soil is melted, the setting of ground. So the ground is icy or melts causes and does not subside evenly . 7, Bridge foundation put on body, cave with stalactites and stalagmites, activity fault,etc. of coming down at the bad geology, may cause and does not subside evenly . 8, After the bridge is built up , the condition change of original ground . After most natural grounds and artificial grounds are soaked with water, especially usually fill out such soil of special ground as the soil , loess , expanding in the land ,etc., soil body intensity meet water drop, compress out of shape to strengthen. In the soft soil ground , season causes the water table to drop to draw water or arid artificially, the ground soil layer consolidates and sinks again, reduce the buoyancy on the foundation at the same time , shouldering the obstruction of rubing to increase, the foundation is carried on ones shoulder or back and strengthened .Some bridge foundation is it put too shallow to bury, erode , is it dig to wash flood, the foundation might be moved. Ground load change of terms, bridge nearby is it is it abolish square , grit ,etc. in a large amount to put to pile with cave in , landslide ,etc. reason for instance, it is out of shape that the bridge location range soil layer may be compressed again. So, the condition of original ground change while using may cause and does not subside evenly Produce the structure thing of horizontal thrust to arched bridge ,etc., it is the main reason that horizontal displacement crack emerges to destroy the original geological condition when to that it is unreasonable to grasp incompletely , design and construct in the geological situation.Progressed concrete has made it possible to develop buildings with unusual shapes, like some of the modern, sports arenas, with large spaces unbroken by any obstructing supports. The uses for this relatively new structural method are constantly being developed.建筑中的结构设计及建筑材料建筑师必须从一种全局的角度出发去处理建筑设计中应该考虑到的实用活动,物质及象征性的需求。因此,他或他试图将有相互有关的空间形式分体系组成的总体系形成一个建筑环境。这是一种复杂的挑战,为适应这一挑战,建筑师需要有一个分阶段的设计过程,其至少要分三个“反馈”考虑阶段:方案阶段,初步设计阶段和施工图设计阶段。这样的分阶段涉及是必需的,它可使设计者避免受很多细节的困惑,而这些细节往往会干扰设计者的基本思路。实际上,我们可以说一个成功的建筑设计师应该具备一种从很多细节中分辨出更为基本的内容的能力。概念构思阶段的任务时提出和斟酌全局场地规划,活动相互作用及房屋形式方案。为实现这些,建筑师必须注意场地各部分的基本使用,空间组织,并应用象征手法确定其具体形式。这就要求建筑师首先按照基本功能和空间关系对一项建筑设计首先构思并模拟出一个抽象的建筑物,然后再对这一抽象的总体空间进行深入探究。在开始勾画具体的建筑形似时,应考虑基本的场所跳进加以修改。在方案阶段,如果设计者能够形象的预见所作方案的结构整体性,并要考虑施工阶段可行性及经济性,那将是非常有帮助的。这就要求建筑师或者过问工程是能够从主要分体系之间的关系而不是从构建细节去构思总体结构方案。这种能够易于反馈以改进空间形式方案。在初步设计阶段,建筑师的重点工作应是详细化可能成为最终方案的设计,这是建筑师对结构的要求业转移到做分体系具体方案的粗略设计上。在这一阶段应该完成对结构布置的中等程度的确定,重点论证和设计主要分体系已确定它们的主要几何尺寸,构件和相互关系。这样就可以依据全局设计方案,确定并解决各分体系的相互影响以及设计难题。顾问工程师在这一过程中作用重大,但各细部的考虑还留有选择余地。当然,这些初步设计阶段所作的决定仍可以反馈回取使方案概念进一步改善,或甚至可能有重大变化。当设计者和顾问工程师对初始阶段设计方案的可行性满意时,就意味着全部设计的基本问题已经解决,不会再因细节问题而发生大的变化。这是工作重点将再次转移,进入细部设计。在这一阶段将重点完善各分体系的细节设计。此时包括结构工程在内的各个领域的专家的作用将十分突出,应为所有施工的细节都必须设计出来。这一阶段的决定,可能会反馈到第二阶段并导致一些变化。如果第一阶段和第二阶段的设计做的深入,那么在最初两个阶段所得到的总体结论和最后阶段的细节的重新设计不再是问题。当然,整个实际过程应该是逐步发展的过程,从创造和细化(改进)总体设计概念直到做出精确的结构设计和细部构造。综上所述:在第一阶段,建筑师必须首先用概念的方式来确定基本方案的全部空间形式的可行性。在第一阶段,专业人员的合作是有意义的,但仅限于行程总的构思方面;在第二阶段,建筑师应该能够用图形来确定各分体系的需求,并且通过估计关键构件的性能来证明其相互作用的可行性。也就是说,主要分体系的性能只须做到一定深度,需要验证他们的基本形式和相互关系是协调一致的。这需要与工程师进行更加详细与明确的合作;在第三阶段,建筑师和专业人员必须继续合作完成所有构件的设计细节,并制定良好的施工文件。当然,这些设计的成功来源于建筑材料的发展与革新。早期的建筑材料主要是木材和砌块,如砖块、石材或瓦片及其它类似的材料。砖和砖之间是由砂浆或者焦油状的沥青或其它粘合物粘结在一起。希腊人和罗马人有时利用铁棒或夹钳来加固他们的建筑。例如,在雅典的帕台农神庙的柱子,就是由在水中也能变得如石材般坚硬的火山灰建成的。钢材和水泥现代最重要的两种建筑材料,在19世纪得到了推广。钢材(从根本上说,是以铁为主要成分并含有少量碳元素的合金),直到出现能够限制其特殊用途(如制造刀刃)的费劳力的铸造方法,才被铸造出来。在1856年贝塞麦炼钢法出现之后,钢材就以较低的价格大量供应。钢材最大的优点就是它的抗拉强度非常高,这也就是说,当它在我们已知的能拉断许多材料的一定拉力作用下,钢材不会丧失它的强度。新的合金元素的加入,大大增加了钢材的强度,并消除的它的一些缺点。例如,钢材在应力不断变化时所表现出的疲劳强度有所见减小的倾向。现代的水泥(也叫波特兰水泥),发明于1824年。它是一种由石灰石和粘土加热后碾成粉末的混合物。它是在施工现场与砂子、骨料(小石块、碎石、砾石)及水,拌制成混凝土。各成分含量的不同, 拌制出的混凝土强度和重量也不同。混凝土应用十分广泛,它可以浇筑、泵送甚至喷射成所有形状。而钢材有很高的抗拉强度和混凝土具有很高的抗压强度,因此,这两种材料相互
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 公司票据活动方案
- 公司糖酒会活动方案
- 公司芒种节气活动方案
- 2025年职业道德与社会责任考试试卷及答案
- 2025年自动化专业实践能力考核试题及答案
- 2025年文化创意产业相关工作者考试试题及答案
- 2025年体能训练师职业资格考试试卷及答案
- 2025年人力资本管理师职业资格考试题及答案
- 2025年软件开发工程师资格考试试卷及答案
- AR环境交互设计-洞察及研究
- 鸟巢建筑分析
- MOOC 大数据与法律检索-湖南师范大学 中国大学慕课答案
- MSDS基础知识培训课件
- 吸入剂的正确使用
- 铁路施工安全培训
- 《造林绿化落地上图操作技术规范》
- 国企基金公司招聘考试题
- 烧伤科普讲座课件
- 《狼性企业文化》课件
- 智慧能源管理平台建设方案书
- 周转材料管理制度范本
评论
0/150
提交评论