




已阅读5页,还剩14页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
中文翻译: 制造齿轮,高精密和相对复杂机床是必需的。现有各种各样类型的机器是努力生产不同几何形式齿经济方法的结果。切齿机是由机器元素“齿轮”(如:从机器运动动作的角度)要求的结果,切齿技术可分为如图9.2所示的成形式和切割(复制)式.齿轮评级流程: (a)高几何精度,尽管形式复杂,但保证必要的运动传动平稳; (b)高的材料强度,使小型齿轮能传递大的扭矩; (c)设计种类多,特别是针对单个和小批量生产的现像,同时为了优化专业驱动特征。 切齿机是由各种不同的观点系统分类的。图9.1对所有的齿轮生产技术作了一个通用的调查并进行了总结。从这里可以看到,粗加工和精加工过程之间分化。按照前面的章节,这项技术将会分为有屑加工和无屑的加工方法。这个有屑加工生产机器是根据切削工具的切削几何参数进一步细分. 为了达到产量的经济性,同时也要维持齿轮高精确度的目的,齿轮切削机开始进行具有高的切削速度和快速进给的改进,这是随后一个整理过程。对于齿轮粗糙的加工过程最广泛使用的滚齿机、插齿和较大的剃齿机。因为最后精加工的工作,最广泛使用的技术是磨齿机与剃齿机和精密齿轮滚动,可能用于最后进行过热处理硬化的齿轮上。 当使用成形式切割方法加工时,轮廓是由工具(铣刀、立铣刀、砂轮)的齿空间完成的。生产齿轮的切削是由每个齿的齿形空间通过一个角度单独完成进行索引的,根据加工牙齿的数量允许下一个齿空间(单一索引方法)进行切削。刀具轮廓必须有明确的切削形式所需的齿空间,这意味着,对于加工每个设计不同的齿轮,一个特殊的切割工具是必需的。因此,这种技术是几乎完全用于专门制造大齿轮的,或在大规模生产的非常小的齿轮的精密工程行业。 当使用生成方法加工时,渐开线生成是刀具和被切齿轮相对运动之间的结果。这是通过一个运动之间的耦合,刀具的工作通常在形式是一个封闭的齿轮裙裾。齿侧面的形成是由一个切削工具产生独特形状造成的轮廓的结果。刀具相对于齿轮的位置由于被切削可能会产生移动增量(指数基因评级技术)或连续不断生成技术。刀具本有身直侧翼,在切削过程中,可能会将这用于形成一个更广泛的给定的工作模块。为了规范和降低一系列的工具装备储备,基本剖面的直齿圆柱齿轮是由正常段齿条(可能被视为一个外部齿轮与一个放大的齿数,n)和所谓的:面对齿轮(包括直齿圆锥齿轮造成的放大斜角在90)易用性锥齿轮定义的。 切齿机的进一步细分可以依据齿轮类型,这将在以下部分中讨论。各种形式的齿轮见图9-3所示分类。.切齿机的生产经济性按照旋转轴的相对位置和需要特定交配的齿轮。 直齿圆柱齿轮(平行轴的旋转和滚动动作)可以有外部以及内部的牙齿,这些可能是直的,螺旋或人字形. . 锥齿轮的牙齿可以是直的、斜的或弯曲的。在后者的缓解行两侧牙齿可能基本上遵循作为渐开线或加工延伸外摆线。此外,轴的旋转被互成直角的可能彼此相交(滚动动作)或他们的轴可能相对移动(斜角蜗杆传动)。锥齿轮主要通过是挤压和研磨然后进行后热处理。 圆柱斜齿轮是交配的圆柱螺旋齿轮,与轴线交叉形成不同螺旋角。两齿轮螺旋角的角度总和确定了轴的交叉方向。他们的制造工艺不同于的直齿圆柱齿轮。为了获得高齿轮比率使轴躺成相互直角可以运用圆柱蜗杆和蜗轮传动。蜗轮蜗杆驱动应用: 9.1切削成形齿轮刀具与切削刃使用的关键几何因素 9.1.1齿轮滑行机 9.1.1.1直齿圆柱齿轮 当应用到生产直齿圆柱齿轮中时,齿轮滑行机按照索引生成原理在半连续工艺(图9.4)中操作,这意味着为了产生特定长度(齿数)的切割变形,生成几个齿空间之前,索引是必要的。切割架提供了切削运动,而工作台通常使产生进给运动。有一部份齿被切完后,工作台就开始脱离,搬回到开始位置并重新切削后面的牙齿。 刀具由直齿或螺旋齿齿条与宽慰侧翼(切削后角)组成。当与其它方法相比,刀具相对容易改变。在高磨损条件(如生产大型齿轮由高强度合金)下,切割架可以变换位置工作才能完成,并且没有影响工作的质量。 完整的齿轮滑行机的传动系统如示意图9.5。主传动(1)的切割架(3)通过一个曲柄安装、连接到减速齿轮机构(2)上,用于设置冲程率。该系统是通过驱动曲柄滑块改变齿轮机构(8)和导螺杆(10)和箴见线性组件产生运动;工作表是安装在提供机构评级块,生成旋转运动来驱动齿轮系(7)得到示数变化,传送到一个伸缩轴和一个蜗轮蜗杆传动机构中。剩下的辅助驱动是用来设置齿根圆半径与电动机或手轮(26)数值,变化径向深度切削运动使用齿轮机构(27)和床主轴(11),以及参与反向自由扭转运动(12、16和18),直到评级机构显示已经到达行程尽头。 图9.6给出了机械结构原理图。刀轴与刀架(尖瘦地调为螺旋齿)是固定在机床上的。旋转的工作表是一个协调滑用于径向切削深度在横向切削进给评级行动。大型机器,径向切削深度,横向进给是由一个滑动柱提供的。图9.7显示了一个齿轮滑行机的一个前视图 。9.1.1.2齿轮 生产锥齿轮有些相似于直齿圆柱齿轮的制造。代替架形成切削刀具,刀具采用的形式是一个面齿轮,原理如图9.8所示。由于生成运动的面齿轮(切割轮直站,齿条式剖面)和齿轮毛坯倾斜的斜面角之间,两翼之间产生齿侧面,切割运动方向产生牙齿的长度。 锥齿轮滑行机、直、斜齿,工作在索引生成原理的基础上。他们的驱动机制是类似齿轮滑行的机器。取而代之的是线性运动的切削机架、切割鼓转动和旋转刨刀(面齿轮),从而产生其切削运动。图9.9说明了这样一个锥齿轮滑行机的工作原理。 另一种方法的锥齿轮滑行它必须被定义为一个锥齿轮滑行过程模板技术形式。刀具是由模板来生成所需的齿廓。该方法是用于专门制造非常大的锥齿轮,切削力会高于传统机器但是生产力相当差。 9.1.2插齿机 插齿机不断基因评级切齿机,可以从图9.10看到。切割轮有一个线性中风运动(切削运动)和齿轮毛坯的同时旋转。先进的机器使用这种方法获得的切削速度超过100米每分钟,结果导致的高双作用冲击率。 刀具拥有一个齿轮形式与铲齿、渐开线形齿侧翼。制造螺旋齿轮的牙齿,合适的螺旋齿切割车轮必须雇用。如图9.10所示轴有一个旋转运动在其行程上,由螺旋铅套引导。这样一个螺旋铅套,结合不同的切割轮,可以用于一个特定范围的螺旋角。作为切削工具有一个有限的应用范围,齿轮机成形主要用于生产内圈齿轮和齿轮的制造与一个小自由轴向空间,如人字,尤其是人字齿(图9.11),以及切割齿轮的集群等。 图9.12显示了按照图式驱动的齿轮成形机。为了获得机构评级切削行动,四个主要运动是必需的。扶轮的运动是切割轮生产的芯片运动,并持续工作至行程和回程。电力传输是直接从主电动机中风的机制。作为中风运动是由一个曲柄运动,切削速度不恒定在整个长度的冲程。在回程中有一个缓冲运动,否则由于连续旋转动作,一个齿轮毛坯和刀具之间的干扰将导致摩擦的发生。旋转进给运动是产生于主传动通过进刀机构变速齿轮。该评级运动即协调旋转的工具和齿轮毛坯的运动,是由传感器轮系和传播到随机存取存储器主轴通过上层蜗轮管理,工作表通过降低蜗轮管理。在一开始的工作周期,工作表产生额外的径向运动,因此得到所需的深度削减。建设插齿机如图9.13所示。 9.1.3齿轮扩孔机 齿轮扩孔机(有时称为形式塑造机器)利用形式切割或复制行动没有任何基因评级运动。刀具的形状根据所需的齿空间轮廓。拉削的渐开线齿轮的牙齿主要用于大批量生产工作,由于高加工成本和相对高的生产力。机器结构及其运动学在很大程度上类似于那些传统的扩孔机,即生产问题和准确度依赖于施工的工具。 9.1.3.1直齿圆柱齿轮 该工具为粗扩内部齿轮,通常由一个圆刀架包含拉削刀具,研磨到所需的渐开线形状和夹紧的楔形。刀具的数量在周边通常是所切削牙齿数目的一半。内部剖面产生两个冲程。一个组件夹具持有齿轮毛坯,让它通过一个齿距。这种技术可以降低成本,还降低了工具的切削力。 图9.14(左)显示了一个示例的粗扩孔的大批量生产行星环形齿轮,该工具包括一个热处理主体与螺纹在柄和结束切削部分。准确的槽是在主体切削刀具中插入,由优质工具钢组成,是固定的。 由于大型轴向深度削减和高切削力的作用,要求的齿轮的齿精度通常不是这样的工具可以实现的。这个工作是粗糙的加工,然后对尺寸而言,在第二次操作中,完成钻孔与分段完成拉削,如图9.14(右)。 基本上,有两种方法用于扩外部齿轮齿的孔;速度剪切技术和管扩孔技术。在速度剪切技术中工件是通过固定刀头向上推(拉削运动)。在刀头(见图9.15,一个刀片)里面,异形钢的速度剪切刀片是固定的径向主轴齿轮毛坯,这样所有的牙空间同时削减。径向位置的叶片是由两个相互作用的锥形环接触向导的面孔叶片钳,在图9.16可以看到在剖视图的铣头。 在每一个冲程工作中,锥形环产生一个小的上升运动,这样的外壳内部锥形环允许刀片从工件在回程收回。在每个新的工作行程,锥形环的移动与一个额外的冲程运动在一个向下的方向,所以,内壳层外锥形环使间隙距离被取消了。此外,这个动作是使所有叶片进一步向工件所需深度的冲程。图9.17显示了工作区域,这样一个拉床与卡盘、齿轮毛坯和铣头。 该技术只有对大量生产具有经济性,作为一个新的刀头是需要每个空白直径。在特殊情况下,使用此方法可以产生内部齿轮。 当管拉削工作,对于速度剪切的技术,是安装在芯棒和向上推到工具管的中空拉刀。在管扩孔工具,使径向切削刀具被安装与进步的高度增加和固定。在插入时,指引线是提供给控制工件安装头在拉削过程。 9.1.3.2锥齿轮 伞齿轮扩孔机工作通常按照“Relevancy“单一索引过程,只能被认为是用在大批量生产领域。在图9.18中,当扩孔车轮转动后,铰孔(类似于一个拉刀)、粗、精加工刀具被依次录用后,就会生产完成齿空间。当切削时,拉削轮子的中心按指定安排好的顺序平行移动到根齿。在一个齿空间完成后,齿轮毛坯的清除是从刀具的拉削车轮到索引一个齿的空间。 9.1.4滚齿机 9.1.4.1直齿圆柱齿轮 齿轮滚刀机器操作一个连续运动的齿轮滚刀作为切削工具。齿轮滚刀的主体是一个圆柱渐开线蜗杆。一个刀具是源自蜗杆。由于蜗杆螺旋被凹槽中断与,两侧翼合成的切削齿是铲齿,允许自由切割。 为了有助于基因的评级动作的理解,一个与齿轮滑行和齿轮成形原理相似的简图如图9.19。在基因评级运动、齿轮滚刀和齿轮毛坯旋转像一个蜗轮蜗杆的传动。旋转滚刀的切削运动也被包含在里面。如图9.20,齿轮的生产可以通过几种不同的动作组合。 当侵蚀滚齿滚刀下切,切屑厚度在初剪时是很大的;实际轮廓成形于刚刚结束的单切。这可能,在某些情况下,由于“组合”的边缘导致质量问题。在切滚刀易用性上,剖面形状立即反映在开始的切削的过程中,结果小切屑片卷产生初始摩擦或压缩,并可能在切削时产生阻力。 对于径向轴向滚压易用性,滚刀是首先径向进入齿轮毛坯进入到所需的齿槽深度,然后滚铣或者使用上切或下切侵蚀的动作。在一个给定数量的齿空间已加工的齿轮或毛胚,滚刀是由给定数据直接地移动,为了使用所有的齿滚刀同时工作。这个动作,有时被称为“转移”,不断发生在对角挤压方法中,在这一个冲程中由一个轴向和切向分量 滚刀的主要尺寸.时间和设置值如图9.21所示,滚刀实际切割位置,滚刀角设置(入射角,)依赖于螺旋的方向和价值。角的牙被削掉(如果有的话). 这个螺旋角的蜗杆在滚刀架上。对于任何一个滚刀,齿轮给定的任何齿数和螺旋齿角,以及各种各样的齿廓的修改,可能会产生不同通过不同的机器设置,提供了牙齿的相同模块和压力角。任何限制仅仅是由于机器的工作能力。 一个简化布局的驱动的滚齿机如图9.22所示。主电机直接驱动滚刀,而工作表通过侧速变速齿轮机构中间伸缩蜗轮蜗杆传动。选择传感器在改变齿轮系坐标的旋转工具和工作比例,这是依赖于被切削牙齿数目和滚刀的螺旋。蜗杆传动驱动进给改变齿轮机构,如图9.。22。旋转的轴向主轴通过无级变速。制造螺旋齿和对角滚齿机、齿轮毛坯切受到额外的旋转运动相对于滚刀进给,由差分驱动提供。微分笼被释放并设置成运动的微分改变齿轮机构,并且选择适当的齿轮。图9.23是一个详细的表示这样的滚齿机运动学的原理图,这也显示了轴获得旋转运动的径向进给。 图9.24显示了一个通用滚齿机的图片。在传统的机器,圆柱是连接到机器床上的。这个工作主轴滑动及其支持中心是由径向进给轴和横向移动获得径向进给。可以移动的滚刀主轴沿挤压滑动通过切向驱动器和一个切向轴,也可以是有角度地调整以适应设置所需的螺旋角的齿轮被削减。铁架驱动和进给驱动位于圆柱。 在一个机器最初的设计,工作台是固定和圆柱沿床身打滑。只有主驱动轴和进给轴在圆柱上。为了提高散热所有其他驱动元素是在一个单独的传动箱左侧机。 为了提供反向自由驱动器,现代机器都为轴装有预紧联结在一起,传递球螺母。表驱动可以反向自由通过两个轴向预应力螺旋或反对使用所谓的“双蜗杆”,有一个稍微不同的倾斜在它的左右两翼,使其调整的方向稍微厚螺旋线当磨损发生时。图9.25显示了这样的建筑设备剖视图一个十字架。英文翻译原文9. GEAR-CUTTING MACHINES10. For the manufacture of gear wheels, comparatively complicated and highly precise machine tools are required. The wide variety of existing types of machines is the result of the effort made to find economic production methods for the geometrically diverse gear-tooth forms. The requirements of a gear-cutting machine result from the demands that are made by the machine element gear wheel, e.g.:(a) high geometric accuracy, notwithstanding the complicated form necessary for the smooth transmission of motion;(b) high material strength to enable the transmission of large torques with small-sized wheels; (c) large varieties of design, particularly in the field of small-batch and one .off production, in order to optimize specialized drive characteristics. Systematic classifications of gear-cutting machines can be made from a variety of different standpoints. As a general survey, all techniques for the production of gear wheels are summarized in Fig. 9.1. From the aspect of the qualities obtainable, differentiation may be made between roughing and fine-finishing processes. In line with the previous chapters, the techniques will be divided into chip-producing and chipless production methods. The chip-producing machines are further subdivided according to the cutting geometry of their cutting tools.In order to achieve an economic production rate, whilst at the same time maintaining a high degree of accuracy of the gears produced, gear cutting is commenced with a high cutting speed and fast feed rates. This is then followed with a finishing process. For rough gear cutting, the processes most widely used are those of hobbing, gear shaping and for larger gear wheels, gear planing; for finishing work, the most widely used technique is that of gear grinding which, in contrast to gear shaving and fine gear rolling, may be carried out after heat treatment on hardened gear wheels.From the point of view of the kinematic action of the machine, gear-cutting techniques may be classified as shown in Fig. 9.2 into form cutting (copying) and gene rating processes.When using the form-cutting processes, the tool (milling cutter, end mill, grinding wheel) is made with the contour of the finished tooth space. Each tooth space is individually finished and the gear wheel being cut is then indexed through an angle, depending on the number of teeth to be produced, to allow the next tooth space to be out (single-indexing method). The cutter profile must be of the exact form of the required tooth space, which means that for every set-up of a different gear wheel to be cut, a special cutting tool is required. Consequently, this technique is almost exclusively used for the one off manufacture of large gear wheels, or in the mass production of very small gear wheels for the precision engineering industry.When using generating methods, the involute is generated as a result of the relative motions between the cutting tool and the gear being cut. This has been achieved through a kinematic coupling between the cutter and the work, normally in the form of a closed gear train. The form of the tooth flank consists of a contour resulting from individual flats produced by the cutting tool. The position of the cutter in relation to the gear being cut may be moved incrementally (index-gene rating technique) or continuously (continuously generating technique). The cutting tool itself has straight flanks and, in contrast to the form-cutting process, may be used for a wider range of work of a given module. In order to standardize and reduce the number of tools to be stocked, the basic profile of spur gears is defined by the normal section of a rack (whichmay be regarded as an external gear with an enlarged number of teeth, n ) and in the ease of bevel gears by the so-called: face gear (consisting of a spur bevel gear resulting from an enlargement of the bevel angle at 90).A further subdivision of gear-cutting machines may be made in accordance with the type of gear which may be produced on them, which will be discussed in the following sections. The various forms of gears illustrated in Fig. 9.3 are classified in accordance with the relative position of the axes of rotation of mating gears and require specific gear-cutting machines to produce them economically.Spur gears (parallel axes of rotation and rolling action) can have external as well as internal teeth, and these may be straight, helical or double-helical in direction.Bevel gears can have their teeth straight, helical or curved. In the latter ease the lines of the flanks of the teeth may basically follow as involutes or an epicycloids. (The Czechos has a comprehensive term “ kotlice”). Furthermore the axes of rotation being at right angles to each other may intersect each other (rolling action) or their axes may be relatively displaced (bevel-worm drive). Bevel gears are mainly produced by hobbing machines and lapped after heat treatment.Cylindrical skew gears are mating cylindrical helical gears, the axes of which are crossed with varying helix angles. The sum of the helix angles of the two gears determines the angle at which the axes cross. Their manufacturing technique does not differ from that of spur gears.In order to obtain high gear ratios for axes lying at right angles to each other, cylindrical worm and worm wheel drives or globoidal (hourglass) (Hindeys screw) worm and worm wheel drives are applied.9.1 Chip-forming gear-cutting machines using cutters with cutting edges of a critical geometry9.1.1 Gear-planing machines9.1.1.1 Spur gearsWhen applied to the production of spur gears, gear-planing machines operate in accordance with the indexing-generation principle in a semi-continuous technique (Fig. 9.4); this means that as a result of the particular length (number of teeth) of the cutting rack, several tooth spaces are generated before indexing is necessary. The cutting rack provides the cutting movement, while the work blank generally makes the generating action. After a number of teeth have been cut, the work blank is disengaged, moved back to the beginning of the feed position and re-engaged to cut a further group of teeth.Fig. 9.4 Principles of gear planingThe cutting tool consists of a straight or helical tooth rack with relieved flanks (cutting clearance angle). When compared with other methods, the cutting tool is comparatively easily changed. Under high wear conditions (e.g. the production of large gear wheels made from high-tensile alloys), the cutting rack may be exchanged before the work is completed, without a detrimental effect on the quality of the work.The complete drive system of a gear-planing machine is shown schematically in Fig. 9.5. The main drive (1) of the ram, on which the cutting rack (3) is mounted, is connected through a crank slide to the reduction gear train (2) which is used to set the stroke rate. The gene rating slide is driven through the module change gear train (8) and the lead screw (10), and pro vide s the linear component of the generating action; the work table, which is mounted on the gene rating slide, provides the rotary generating motion by obtaining its drive from the index-change gear train (7), transmitted to a telescopic shaft and on to a worm and worm wheel drive. The remaining auxiliary drives are used to set the root circle radius with a motor or a handwheel (26), for activation of the radial depth of cut movement using the gear train (27) and the bed spindle (11), and for the backlash-free engagement of the reversing movement (12, 16 and 18), when the gene rating slide has reached the end of its travel.Fig. 9.5 Drive lay-out of a gear-planing machineA schematic diagram of the machine construction is given in Fig. 9.6. The column with the tool slide (angularly adjustable for helical teeth) is bolted to the machine bed. The rotating work table lies on a co-ordinate slide which is used for the radial cutting depth in-feed and the tangential gene rating action. On large machines, the radial cutting depth in- feed is provided by a sliding column. Figure 9.7 shows a front view of a gear-planing machine.9.1.1.2 Bevel gears The production of bevel gears has some similarities with the manufacture of spur gears. In place of the rack-formed cutting tool, the cutter takes the form of a face gear, the principle of which is shown in Fig. 9.8. As a result of the generating motion between the face gear (cutting wheel with a straight sided, rack-type profile) and the gear blank inclined at the bevel angle , the gear-tooth flanks are produced. The cutting motion is in the direction of the length of the teeth.Bevel-gear-planing machines, for straight and helical teeth, work on the indexing-generating principle. Their drive mechanism is similar to that of spur-gear -planing machines. Instead of the linear movement of the cutting rack, the cutting drum turns, so rotating the planing tool (face gear), and thus producing its cutting motion. Figure 9.9 illustrates such a bevel-gear-planing machine.Another method of bevel-gear planing which must be defined as a bevel-gear form-planing process is the template technique. The cutting tool is guided by a template to produce the desired tooth profile. The method is used for the one off manufacture of very large bevel gears, where the cutting forces would be too high for conventional machines but productivity however is rather poor.9.1.2 Gear-shaping machines Gear-shaping machines are continuously gene rating gear-cutting machines, as may be seen from Fig. 9.10. The cutting wheel has a linear stroke movement (cutting movement) and simultaneously rotates with the gear blank. Advanced machines using this method obtain cutting speeds in excess of 100 m.min-l as a result of the application of high double-acting stroke rates.The cutting tool has the form of a gear wheel with form-relieved, involute-shaped tooth flanks. For the manufacture of helical gear teeth, suitable helical-toothed cutting wheels must be employed, as shown in Fig. 9.10. The ram spindle has a rotary motion during its stroke, guided by a helical lead sleeve. Such a helical lead sleeve, in combination with different cutting wheels, may be used for a specific range of helix angles. As the cutting tools have a limited range of application, gear shaping is mainly used for the production of internal gears and the manufacture of gears with a small free-axial space, e.g. double-helical and especially herringbone teeth (Fig. 9.11), as well as for the cutting of gear clusters, etc.Fig. 9.11 Gear shaping of herringbone teeth.Figure 9.12 shows schematically the drive of a gear-shaping machine. To obtain the gene rating cutting action, four main movements are required. The rotary action of the cutting wheel is the chip-producing motion, and continues through the working stroke and the return stroke. The power transmission is direct from the main motor to the stroke mechanism. As the stroke movement is produced by a crank motion, the cutting speed is not constant throughout the length of the stroke. During the return stroke a relieving motion is applied as otherwise, due to the continuous rotary action, an interference between the gear blank and cutting tool would cause rubbing to take place. The rotary feed motion is picked up from the main drive through the feed change gears. The gene rating motion i.e. the co-ordination of the rotary motion of the tool and gear blank, is governed by the pick-off gear train and is transmitted to the ram spindle through the upper worm wheel, and to the work table through the lower worm wheel. At the beginning of the work cycle, the work table makes an additional radial movement, so that the desired depth of cut is obtained. Figure 9.13 pictures the 0000000000000000construction of a gear-shaping machiGear-broaching machines (sometimes known as form-shaping machines) utilize a form-cutting or copying action without any gene rating movement. The cutting tool is shaped according to the required tooth-space contour. Broaching of involute gear teeth is primarily used for mass-production work, owing to the high tooling costs and the comparatively high productivity. Machine construction and their kinematics are largely similar to those of conventional broaching machines, i.e. the production problems and the degree of accuracy are dependent on the c
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 高校教师资格证之《高等教育法规》考前冲刺分析带答案详解(黄金题型)
- 2024-2025学年度工程硕士经典例题及完整答案详解(历年真题)
- 应急处置程序安全培训课件
- 新生儿消化系统常见疾病临床特点与鉴别诊断
- 麦田房产合同(标准版)
- 承包的士车合同(标准版)
- NMN适合女性吗女性是否可以吃nmn从内而外的健康焕新
- 中小学安全法制教育工作计划与思路16篇
- 文化发展公司合伙协议书
- 四年级健康教育教学计划
- 博物馆反恐安全知识培训课件
- 儿科高危药品与急救药品管理指南
- 《电机与拖动基础》课件(共十一章)
- 2024版中国难治性全身型重症肌无力诊断和治疗专家共识解读课件
- 鸿蒙应用开发案例实战(ArkTS版)(AI助学)(微课版)-课程标准
- 新学期教学工作会议上校长讲话:把功夫下在课堂里把心思放在学生上把质量落到细节中
- 2025年全国青少禁毒知识竞赛题库(答案+解析)
- 2024年成人高考成考(专升本)大学语文试题及解答参考
- 模切机保养管理办法
- 抑郁症病例分析报告
- 男人健康饮食管理方案
评论
0/150
提交评论