有限元分析大作业报告.doc_第1页
有限元分析大作业报告.doc_第2页
有限元分析大作业报告.doc_第3页
有限元分析大作业报告.doc_第4页
有限元分析大作业报告.doc_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

船海1004 黄山 U201012278有限元分析大作业报告试题1:一、 问题描述及数学建模图示无限长刚性地基上的三角形大坝,受齐顶的水压力作用,试用三节点常应变单元和六节点三角形单元对坝体进行有限元分析,并对以下几种计算方案进行比较:(1)分别采用相同单元数目的三节点常应变单元和六节点三角形单元计算;(2)分别采用不同数量的三节点常应变单元计算;(3)当选常应变三角单元时,分别采用不同划分方案计算。该问题属于平面应变问题,大坝所受的载荷为面载荷,分布情况及方向如图所示。二、 采用相同单元数目的三节点常应变单元和六节点三角形单元计算1、 有限元建模(1)设置计算类型:两者因几何条件和载荷条件均满足平面应变问题,故均取Preferences为Structural(2)选择单元类型:三节点常应变单元选择的类型是Solid Quad 4 node182;六节点三角形单元选择的类型是Solid Quad 8 node183。因研究的问题为平面应变问题,故对Element behavior(K3)设置为plane strain。(3)定义材料参数:弹性模量E=2.1e11,泊松比=0.3(4)建几何模型:生成特征点;生成坝体截面(5)网格化分:划分网格时,拾取lineAB和lineBC,设定input NDIV 为15;拾取lineAC,设定input NDIV 为20,选择网格划分方式为Tri+Mapped,最后得到600个单元。 (6)模型施加约束:约束采用的是对底面BC全约束。大坝所受载荷形式为Pressure,作用在AB面上,分析时施加在LAB上,方向水平向右,载荷大小沿LAB由小到大均匀分布。以B为坐标原点,BA方向为纵轴y,则沿着y方向的受力大小可表示为: 2、 计算结果及结果分析 (1) 三节点常应变单元三节点常应变单元的位移分布图三节点常应变单元的应力分布图(2) 六节点三角形单元六节点三角形单元的变形分布图六节点三角形单元的应力分布图(3) 计算数据表单元类型最小位移(mm)最大位移(mm)最小应力(Pa)最大应力(Pa)三节点00.02845460.7392364六节点00.02920.001385607043(4) 结果分析 最大位移都发生在A点,即大坝顶端,最大应力发生在B点附近,即坝底和水的交界处,且整体应力和位移变化分布趋势相似,符合实际情况; 结果显示三节点和六节点单元分析出来的最大应力值相差较大,原因可能是B点产生了虚假应力,造成了最大应力值的不准确性。 根据结果显示,最小三节点和六节点单元分析出来的最小应力值相差极为悬殊,结合理论分析,实际上A点不承受载荷,最小应力接近于零,显然六节点三角形单元分析在这一点上更准确。 六节点的应力范围较大,所以可判断在单元数目相同的前提下,节点数目越多,分析精度就越大;但是节点数目的增多会不可避免地带来计算工作量增加和计算效率降低的问题。三、 分别采用不同数量的三节点常应变单元计算1、 有限元建模(单元数目分别为150和1350)2、 计算结果及结果分析(1) 单元数目为150的常应变三节点单元 (2) 单元数目为1350的常应变三节点单元(3) 计算数据表单元数最大位移(mm)最小应力(Pa)最大应力(Pa)910.027010923.530192413500.02883640.16452618(4) 结果分析 单元数目的增加,最大位移变化不大,应力变化范围逐步增大;网格划分越密,分析的结果准确度将会提高;单元数目的增加和节点数目的增加都会造成计算量的增加和计算速度的下降的问题。四、 当选常应变三角单元时,分别采用不同划分方案计算1、 方案一2、 方案二3、 计算数据表最大位移(mm)最小应力(Pa)最大应力(Pa)方案一0.012876772147567方案二0.010750772.91561734、 数据分析由以上分析结果可知,由于方案一和二都只有四个单元,所以在计算应力和位移的时结果的准确度较低。分析应力图可知,方案二得出的最大应力不在坝底和水的交界处,不符合实际情况,而方案一的最大应力所在位置符合实际情况,所以总体来说,方案一的分析结果优于方案二。试题3:一、问题描述及数学建模图示为一带圆孔的单位厚度(1M)的正方形平板,在x方向作用均布压力0.25Mpa,试用三节点常应变单元和六节点三角形单元对平板进行有限元分析,并对以下几种计算方案的计算结果进行比较:(1)分别采用相同单元数目的三节点常应变单元和六节点三角形单元计算;(2)分别采用不同数量的三节点常应变单元计算;在y轴上,孔边应力的精确解为:,在x轴上,孔边应力的精确解为:由图可知,本题所研究问题为平面应力问题,又因此平板结构关于图示中X、Y轴对称,可以利用此对称性,取截面的四分之一进行分析计算。二、采用相同单元数目的三节点常应变单元和六节点三角形单元计算1、三节点常应变单元2、六节点三角形单元3、计算结果及分析DMXSMNSMX三节点0.309e-040.390e-050.309e-04-0.7080.225六节点0.309e-040.391e-050.309e-04-0.780.258理论值-0.750.25由上表可看出,在单元数目相同的情况,六节点常应变三角形单元的分析精度要高于三节点常应变三角形单元。所以,当单元形状和大小相同时,高阶单元的计算精度要高于低阶单元。三、采用不同数量的三节点常应变单元计算1、第一次加密2、第二次加密3、计算结果及分析DMXSMNSMX单元数不加密0.309e-40.391e-50.309e-4-0.7010.2252225第一次加密0.309e-40.393e-50.309e-4-0.7260.2345020第二次加密0.309e-40.395e-50.309e-4-0.7410.2479140理论值-0.750.25由上表可知,虽然常应变三角形单元的计算结果没有高阶单元的计算结果精确,但是随着单元数目的增多,计算结果逐渐的接近高阶单元的计算结果。加筋板建模:一、 问题描述及数学建模加筋板的几何模型如图所示。纵向加强筋横向加强筋9m6m板厚t=15mm四边简支的板,受到均布压力0.1Mpa的作用,求变形和应力。要求:使用shell63和beam188单元。二、 有限元建模1、 几何建模用工作平面把平板按照加强筋的位置分割成如下图所示的几何模型。2、 属性定义: 单元类型板:shell63 加强筋:beam188材料属性杨氏模量E=2.1e+11,泊松比0.3 实常数板厚0.02m梁截面(Section)纵向加强筋;横向加强筋3、 梁的方向点:每一根横向加强筋和纵向加强筋都要定义一个方向点4、 改变线的方向:改变线的方向的目的是改变梁的方向5、 有限元模型 不显示梁截面的有限元模型不显示梁截面的位移云图不显示梁截面的应力云图显示梁截面的有限元模型 (a)横向加强筋截面形状 (b)纵向加强筋截面形状显示梁截面的载荷模型 显示梁截面的位移云图 显示梁截面的应力云图三、 结果分析最大位移最大应力最小应力无

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论