高考数学复习--最新3年高考2年模拟三角函数.doc_第1页
高考数学复习--最新3年高考2年模拟三角函数.doc_第2页
高考数学复习--最新3年高考2年模拟三角函数.doc_第3页
高考数学复习--最新3年高考2年模拟三角函数.doc_第4页
高考数学复习--最新3年高考2年模拟三角函数.doc_第5页
已阅读5页,还剩121页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

【3年高考2年模拟】三角函数 第一部分 三年高考荟萃 高考数学分类汇编(1)三角函数一、选择题1 (2012年高考(辽宁文)已知,(0,),则=()A1BCD12 (2012年高考(浙江文理)把函数y=cos2x+1的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),然后向左平移1个单位长度,再向下平移 1个单位长度,得到的图像是3 (2012年高考(天津文)将函数的图像向右平移个单位长度,所得图像经过点,则的最小值是()AB1CD24 (2012年高考(四川文)如图,正方形的边长为,延长至,使,连接、则()ABCD5 (2012年高考(山东文)函数的最大值与最小值之和为()AB0C-1D6 (2012年高考(课标文)已知0,直线=和=是函数图像的两条相邻的对称轴,则=()ABCD7(2012年高考(福建文)函数的图像的一条对称轴是()ABCD8(2012年高考(大纲文)若函数是偶函数,则()ABCD9(2012年高考(安徽文)要得到函数的图象,只要将函数的图象()A向左平移1个单位B向右平移1个单位 C向左平移个单位D向右平移个单位10 (2012年高考(新课标理)已知,函数在上单调递减.则的取值范围是()ABCD二、解答题11(2012年高考(重庆文)(本小题满分12分,()小问5分,()小问7分)设函数(其中 )在处取得最大值2,其图象与轴的相邻两个交点的距离为(I)求的解析式; (II)求函数的值域.12(2012年高考(陕西文)函数()的最大值为3, 其图像相邻两条对称轴之间的距离为,(1)求函数的解析式;(2)设,则,求的值.参考答案一、选择题1. 【答案】A 【解析】故选A 【点评】本题主要考查三角函数中的倍角公式以及转化思想和运算求解能力,属于容易题. 2. 【答案】A 【命题意图】本题主要考查了三角函数中图像的性质,具体考查了在x轴上的伸缩变换,在x轴、y轴上的平移变化,利用特殊点法判断图像的而变换. 【解析】由题意,y=cos2x+1的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),即解析式为y=cosx+1,向左平移一个单位为y=cos(x-1)+1,向下平移一个单位为y=cos(x-1),利用特殊点变为,选A. 3. 【解析】函数向右平移得到函数,因为此时函数过点,所以,即所以,所以的最小值为2,选D. 4. 答案B 点评注意恒等式sin2+cos2=1的使用,需要用的的范围决定其正余弦值的正负情况. 5. 解析:由可知,可知 ,则, 则最大值与最小值之和为,答案应选A. 6. 【命题意图】本题主要考查三角函数的图像与性质,是中档题. 【解析】由题设知,=,=1,=(), =(),=,故选A. 7. 【答案】C 【解析】把代入后得到,因而对称轴为,答案C正确. 【考点定位】此题主要考查三角函数的图像和性质,代值逆推是主要解法. 8.答案C 【命题意图】本试题主要考查了偶函数的概念与三角函数图像性质,. 【解析】由为偶函数可知,轴是函数图像的对称轴,而三角函数的对称轴是在该函数取得最值时取得,故,而,故时,故选答案C. 9. 【解析】选 左+1,平移 10、【解析】选 不合题意 排除 合题意 排除 另:, 得: 二、11. 【答案】:()() 因,且 故 的值域为 12. 解析:(1)函数的最大值为3,即 函数图像的相邻两条对称轴之间的距离为,最小正周期为 ,故函数的解析式为 (2) 即 , ,故 2012年高考数学分类汇编(2)三角恒等变换一、选择题1 (2012年高考(重庆文)()ABCD2 (2012年高考(重庆理)设是方程的两个根,则的值为()ABC1D33 (2012年高考(陕西文)设向量=(1.)与=(-1, 2)垂直,则等于 A B C0D-14 (2012年高考(辽宁文)已知,(0,),则=()A1BCD15 (2012年高考(辽宁理)已知,(0,),则=()A1BCD16(2012年高考(江西文)若,则tan2=()A-BC-D7(2012年高考(江西理)若tan+ =4,则sin2=()ABCD8(2012年高考(大纲文)已知为第二象限角,则()ABCD9 (2012年高考(山东理)若,则()ABCD10(2012年高考(湖南理)函数f(x)=sinx-cos(x+)的值域为()A -2 ,2B-,C-1,1 D- , 11(2012年高考(大纲理)已知为第二象限角,则()ABCD二、填空题1(2012年高考(大纲文)当函数取最大值时,_.2( 2012年高考(江苏)设为锐角,若,则的值为_.3(2012年高考(大纲理)当函数取得最大值时,_.三、解答题1(2012年高考(四川文)已知函数.()求函数的最小正周期和值域;()若,求的值.2(2012年高考(湖南文)已知函数的部分图像如图5所示.()求函数f(x)的解析式;()求函数的单调递增区间.3(2012年高考(湖北文)设函数的图像关于直线对称,其中为常数,且(1)求函数的最小正周期;(2)若的图像经过点,求函数的值域.4(2012年高考(福建文)某同学在一次研究性学习中发现,以下五个式子的值都等于同一个常数.(1)(2)(3)(4)(5) 试从上述五个式子中选择一个,求出这个常数 根据()的计算结果,将该同学的发现推广为三角恒等式,并证明你的结论.5(2012年高考(北京文)已知函数.(1)求的定义域及最小正周期;(2)求的单调递减区间. 6(2012年高考(天津理)已知函数,.()求函数的最小正周期;()求函数在区间上的最大值和最小值.7(2012年高考(重庆理)(本小题满分13分()小问8分()小问5分)设,其中()求函数 的值域()若在区间上为增函数,求 的最大值.8(2012年高考(四川理)函数在一个周期内的图象如图所示,为图象的最高点,、为图象与轴的交点,且为正三角形.()求的值及函数的值域;()若,且,求的值.9(2012年高考(山东理)已知向量,函数的最大值为6.()求;()将函数的图象向左平移个单位,再将所得图象上各点的横坐标缩短为原来的倍,纵坐标不变,得到函数的图象.求在上的值域. 10(2012年高考(湖北理)已知向量,设函数的图象关于直线对称,其中,为常数,且. ()求函数的最小正周期; ()若的图象经过点,求函数在区间上的取值范围.11(2012年高考(广东理)(三角函数)已知函数(其中)的最小正周期为.()求的值;()设、,求的值.12(2012年高考(福建理)某同学在一次研究性学习中发现,以下五个式子的值都等于同一个常数.(1)(2)(3)(4)(5) 试从上述五个式子中选择一个,求出这个常数 根据()的计算结果,将该同学的发现推广三角恒等式,并证明你的结论.13(2012年高考(北京理)已知函数.(1)求的定义域及最小正周期;(2)求的单调递增区间. 14(2012年高考(安徽理)设函数(I)求函数的最小正周期;(II)设函数对任意,有,且当时, ,求函数在上的解析式.参考答案一、选择题1. 【答案】:C 【解析】: 【考点定位】本题考查三角恒等变化,其关键是利用 2. 【答案】A 【解析】 【考点定位】此题考查学生灵活运用韦达定理及两角和的正切公式化简求值. 3. 解析:,故选C. 4. 【答案】A 【解析】故选A 【点评】本题主要考查三角函数中的倍角公式以及转化思想和运算求解能力,属于容易题. 5. 【答案】A 【解析一】 ,故选A 【解析二】 ,故选A 【点评】本题主要考查三角函数中的和差公式、倍角公式、三角函数的性质以及转化思想和运算求解能力,难度适中. 6. 【答案】B 【解析】主要考查三角函数的运算,分子分母同时除以可得,带入所求式可得结果. 7. D【解析】本题考查三角恒等变形式以及转化与化归的数学思想. 因为,所以. 【点评】本题需求解正弦值,显然必须切化弦,因此需利用公式转化;另外,在转化过程中常与“1”互相代换,从而达到化简的目的;关于正弦、余弦的齐次分式,常将正弦、余弦转化为正切,即弦化切,达到求解正切值的目的. 体现考纲中要求理解三角函数的基本关系式,二倍角公式.来年需要注意二倍角公式的正用,逆用等.8.答案A 【命题意图】本试题主要考查了同角三角函数关系式的运用以及正弦二倍角公式的运用. 【解析】因为为第二象限角,故,而,故,所以,故选答案A. 9. 【解析】因为,所以,所以,又,所以,选D. 10. 【答案】B 【解析】f(x)=sinx-cos(x+),值域为-,. 【点评】利用三角恒等变换把化成的形式,利用,求得的值域. 11. 答案A 【命题意图】本试题主要考查了三角函数中两角和差的公式以及二倍角公式的运用.首先利用平方法得到二倍角的正弦值,然后然后利用二倍角的余弦公式,将所求的转化为单角的正弦值和余弦值的问题. 【解析】,两边平方可得 是第二象限角,因此, 所以 法二:单位圆中函数线+估算,因为是第二象限的角,又 所以“正弦线”要比“余弦线”长一半多点,如图,故的“余弦线”应选. 二、填空题1.答案: 【命题意图】本试题主要考查了三角函数性质的运用,求解值域的问题.首先化为单一三角函数,然后利用定义域求解角的范围,从而结合三角函数图像得到最值点. 【解析】由 由可知 当且仅当即时取得最小值,时即取得最大值. 2. 【答案】. 【考点】同角三角函数,倍角三角函数,和角三角函数. 【解析】为锐角,即,. ,. . . 3.答案: 【命题意图】本试题主要考查了三角函数性质的运用,求解值域的问题.首先化为单一三角函数,然后利用定义域求解角的范围,从而结合三角函数图像得到最值点. 【解析】由 由可知 当且仅当即时取得最小值,时即取得最大值. 三、解答题1. 解析(1)由已知,f(x)= 所以f(x)的最小正周期为2,值域为 (2)由(1)知,f()= 所以cos(). 所以 , 点评本小题主要考查三角函数的性质、两角和的正(余)弦公式、二倍角公式等基础知识,考查运算能力,考查化归与转化等数学思想. 2. 【解析】()由题设图像知,周期. 因为点在函数图像上,所以. 又即. 又点在函数图像上,所以,故函数f(x)的解析式为 () 由得 的单调递增区间是 【点评】本题主要考查三角函数的图像和性质.第一问结合图形求得周期从而求得.再利用特殊点在图像上求出,从而求出f(x)的解析式;第二问运用第一问结论和三角恒等变换及的单调性求得. 3. 【解析】(1)因为 由直线是图像的一条对称轴,可得 所以,即 又,所以时,故的最小正周期是. (2)由的图象过点,得 即,即 故,函数的值域为. 【点评】本题考查三角函数的最小正周期,三角恒等变形;考查转化与划归,运算求解的能力.二倍角公式,辅助角公式在三角恒等变形中应用广泛,它在三角恒等变形中占有重要的地位,可谓是百考不厌. 求三角函数的最小正周期,一般运用公式来求解;求三角函数的值域,一般先根据自变量的范围确定函数的范围.来年需注意三角函数的单调性,图象变换,解三角形等考查. 4. 【考点定位】本题主要考查同角函数关系、两角和与差的三角函数公式、二倍角公式,考查运算能力、特殊与一般思想、化归与转化的思想. 解:(1)选择(2)式计算如下 (2)证明: 5. 【考点定位】本题考查三角函数,三角函数难度较低,此类型题平时的练习中练习得较多,考生应该觉得非常容易入手. 解:(1)由得,故的定义域为. 因为=, 所以的最小正周期. (2)函数的单调递减区间为. 由得 所以的单调递减区间为6. 【命题意图】本题考查两角和与差的正弦公式、二倍角的余弦公式,三角函数的最小周期,单调性等知识. 所以,的最小正周期. (2)因为在区间上是增函数,在区间上是减函数,又,故函数在区间上的最大值为,最小值为. 【点评】该试题关键在于将已知的函数表达式化为的数学模型,再根据此三角模型的图像与性质进行解题即可. 7. 【考点定位】本题以三角函数的化简求值为主线,三角函数的性质为考查目的的一道综合题,考查学生分析问题解决问题的能力,由正弦函数的单调性结合条件可列,从而解得的取值范围,即可得的最在值. 解:(1) 因,所以函数的值域为 (2)因在每个闭区间上为增函数,故在每个闭区间上为增函数. 依题意知对某个成立,此时必有,于是 ,解得,故的最大值为. 8. 解析()由已知可得: =3cosx+又由于正三角形ABC的高为2,则BC=4 所以,函数 所以,函数 ()因为()有 由x0 所以, 故 点评本题主要考查三角函数的图像与性质同三角函数的关系、两角和的正(余)弦公式、二倍角公式等基础知识,考查运算能力,考查树形结合、转化等数学思想. 9.解析:(), 则; ()函数y=f(x)的图象像左平移个单位得到函数的图象, 再将所得图象各点的横坐标缩短为原来的倍,纵坐标不变,得到函数. 当时,. 故函数在上的值域为. 另解:由可得,令, 则,而,则, 于是, 故,即函数在上的值域为. 10.考点分析:本题考察三角恒等变化,三角函数的图像与性质. 解析:()因为 . 由直线是图象的一条对称轴,可得, 所以,即. 又,所以,故. 所以的最小正周期是. ()由的图象过点,得, 即,即. 故, 由,有, 所以,得, 故函数在上的取值范围为. 11.解析:(),所以. (),所以.,所以.因为、,所以,所以. 12. 【考点定位】本题主要考查同角函数关系、两角和与差的三角函数公式、二倍角公式、考查运算能力、特殊与一般思想、化归与转化思想. 解:(1)选择(2)式计算如下 (2)证明: 13. 【考点定位】本题考醒三角函数知识,此类型题在平时练习时练得较多,考生应该觉得非常容易入手. 解:= =, (1)原函数的定义域为,最小正周期为; (2)原函数的单调递增区间为,. 14. 【解析】 (I)函数的最小正周期 (2)当时, 当时, 当时, 得:函数在上的解析式为 2012年高考数学分类汇编(3)解三角形一、选择题1 (2012年高考(上海文)在中,若,则的形状是()A钝角三角形.B直角三角形.C锐角三角形.D不能确定.2(2012年高考(湖南文)在ABC中,AC= ,BC=2,B =60,则BC边上的高等于()ABCD3(2012年高考(湖北文)设的内角所对的边分别为,若三边的长为连续的三个正整数,且,则为()A432B567C543D6544(2012年高考(广东文)(解三角形)在中,若,则()ABCD5 (2012年高考(天津理)在中,内角,所对的边分别是,已知,则()ABCD6 (2012年高考(上海理)在中,若,则的形状是()A锐角三角形.B直角三角形.C钝角三角形.D不能确定.7 (2012年高考(陕西理)在中,角所对边长分别为,若,则的最小值为()ABCD二、填空题1(2012年高考(重庆文)设的内角 的对边分别为,且,则_2(2012年高考(陕西文)在三角形ABC中,角A,B,C所对应的长分别为a,b,c,若a=2 ,B=,c=2,则b=_3(2012年高考(福建文)在中,已知,则_.4(2012年高考(北京文)在ABC中,若,则的大小为_.5(2012年高考(重庆理)设的内角的对边分别为,且则_6(2012年高考(湖北理)设的内角,所对的边分别为,. 若,则角_. 7(2012年高考(福建理)已知得三边长成公比为的等比数列,则其最大角的余弦值为_.8(2012年高考(北京理)在ABC中,若,则_.9(2012年高考(安徽理)设的内角所对的边为;则下列命题正确的是若;则 若;则 若;则 若;则若;则三、解答题1(2012年高考(浙江文)在ABC中,内角A,B,C的对边分别为a,b,c,且bsinA=acosB.(1)求角B的大小;(2)若b=3,sinC=2sinA,求a,c的值.2(2012年高考(天津文)在中,内角所对的分别是.已知.(I)求和的值; (II)求的值.3(2012年高考(山东文)(本小题满分12分)在ABC中,内角所对的边分别为,已知.()求证:成等比数列;()若,求的面积S.4(2012年高考(辽宁文)在中,角A、B、C的对边分别为a,b,c.角A,B,C成等差数列.()求的值;()边a,b,c成等比数列,求的值.5(2012年高考(课标文)已知,分别为三个内角,的对边,.()求;()若=2,的面积为,求,.6(2012年高考(江西文)ABC中,角A,B,C的对边分别为a,b,c.已知3cos(B-C)-1=6cosBcosC.(1)求cosA;(2)若a=3,ABC的面积为,求b,c.7(2012年高考(大纲文)中,内角A.B.C成等差数列,其对边满足,求.8(2012年高考(安徽文)设的内角所对的边为,且有()求角的大小;(II) 若,为的中点,求的长.9(2012年高考(浙江理)在ABC中,内角A,B,C的对边分别为a,b,c.已知cosA=,sinB=cosC.()求tanC的值;()若a=,求ABC的面积.10(2012年高考(辽宁理)在中,角A、B、C的对边分别为a,b,c.角A,B,C成等差数列.()求的值;()边a,b,c成等比数列,求的值.11(2012年高考(江西理)在ABC中,角A,B,C的对边分别为a,b,c.已知,.(1)求证:(2)若,求ABC的面积.12(2012年高考(江苏)在中,已知.(1)求证:;(2)若求A的值.13(2012年高考(大纲理)(注意:在试卷上作答无效)的内角、的对边分别为、,已知,求.参考答案一、选择题1. 解析 由条件结合正弦定理,得,再由余弦定理,得, 所以C是钝角,选A. 2. 【答案】B 【解析】设,在ABC中,由余弦定理知, 即,又 设BC边上的高等于,由三角形面积公式,知 ,解得. 【点评】本题考查余弦定理、三角形面积公式,考查方程思想、运算能力,是历年常考内容. 3. D【解析】因为为连续的三个正整数,且,可得,所以;又因为已知,所以.由余弦定理可得,则由可得,联立,得,解得或(舍去),则,.故由正弦定理可得,.故应选D. 【点评】本题考查正、余弦定理以及三角形中大角对大边的应用.本题最终需求解三个角的正弦的比值,明显是要利用正弦定理转化为边长的比值,因此必须求出三边长.来年需注意正余弦定理与和差角公式的结合应用. 4.解析:B.由正弦定理,可得,所以. 5. 【答案】A 【命题意图】本试题主要考查了正弦定理、三角函数中的二倍角公式. 考查学生分析、转化与计算等能力. 【解析】,由正弦定理得,又,所以,易知,=. 6. 解析 由条件结合正弦定理,得,再由余弦定理,得, 所以C是钝角,选C. 7. 解析:由余弦定理得,当且仅当时取“=”,选C. 二、填空题1. 【答案】: 【解析】,由余弦定理得,则,即,故. 【考点定位】利用同角三角函数间的基本关系式求出的值是本题的突破点,然后利用正弦定理建立已知和未知之间的关系,同时要求学生牢记特殊角的三角函数值. 2.解析:由余弦定理得,所以. 3. 【答案】 【解析】由正弦定理得 【考点定位】本题考查三角形中的三角函数,正弦定理,考醒求解计算能力. 4. 【答案】 【解析】,而,故. 【考点定位】本小题主要考查的是解三角形,所用方法并不唯一,对于正弦定理和余弦定理此二者会其一都可以得到最后的答案. 5. 【答案】 【解析】由,由正弦定理得,由余弦定理 【考点定位】利用同角三角函数间的基本关系求出的值是本题的突破点,然后利用正弦定理建立已知和未知之间的关系,同时要求学生牢记特殊角的三角函数值. 6.考点分析:考察余弦定理的运用. 解析:由 根据余弦定理可得 7. 【答案】 【解析】设最小边为,则其他两边分别为,由余弦定理得,最大角的余弦值为 【考点定位】此题主要考查三角形中的三角函数,等比数列的概念、余弦定理,考查分析推理能力、运算求解能力. 8. 【答案】 【解析】在中,得用余弦定理,化简得,与题目条件联立,可解得,答案为. 【考点定位】 本题考查的是解三角形,考查余弦定理的应用.利用题目所给的条件列出方程组求解. 9. 【解析】正确的是 当时,与矛盾 取满足得: 取满足得: 三、解答题1. 【命题意图】本题主要考查了正弦定理、余弦定理、三角形内角和定理,考查考生对基础知识、基本技能的掌握情况. 【解析】(1)bsinA=acosB,由正弦定理可得,即得,. (2)sinC=2sinA,由正弦定理得,由余弦定理,解得,. 2.解:(1)在中,由,可得,又由及,可得 由,因为,故解得. 所以 (2)由,得, 所以 3.解:(I)由已知得:, ,则, 再由正弦定理可得:,所以成等比数列. (II)若,则, , 的面积. 4、 【答案与解析】 (1)由已知 (2)解法一:,由正弦定理得 解法二:,由此得得 所以, 【点评】本题主要考查三角形的正弦定理、余弦定理、三角形内角和定理及等差、等比数列的定义,考查转化思想和运算求解能力,属于容易题.第二小题既可以利用正弦定理把边的关系转化为角的关系,也可以利用余弦定理得到边之间的关系,再来求最后的结果. 5. 【命题意图】本题主要考查正余弦定理应用,是简单题. 【解析】()由及正弦定理得 由于,所以, 又,故. () 的面积=,故=4, 而 故=8,解得=2. 法二:解: 已知:,由正弦定理得: 因,所以: , 由公式:得: ,是的内角,所以,所以: (2) 解得: 6. 【解析】(1)则. (2) 由(1)得,由面积可得bc=6,则根据余弦定理 则,两式联立可得或. 7. 【命题意图】: 本试题主要考查了解三角形的运用.该试题从整体看保持了往年的解题风格,依然是通过边角的转换,结合了三角形的内角和定理的知识,以及正弦定理求解三角形中的角的问题.试题整体上比较稳定,思路比较容易想,先利用等差数列得到角,然后利用正弦定理与三角求解运算得到答案. 【解析】由A.B.C成等差数列可得,而,故且 而由与正弦定理可得 所以可得 ,由,故 或,于是可得到或. 8. 【解析】() (II) 在中,9. 【解析】本题主要考察三角恒等变换,正弦定理,余弦定理及三角形面积求法等知识点. () cosA=0,sinA=, 又cosC=sinB=sin(A+C)=sinAcosC+sinCcosA =cosC+sinC. 整理得:tanC=. ()由图辅助三角形知:sinC=. 又由正弦定理知:, 故. (1) 对角A运用余弦定理:cosA=. (2) 解(1) (2)得: or b=(舍去). ABC的面积为:S=. 【答案】() ;() . 10. 【答案及解析】 (1)由已知 (2)解法一:,由正弦定理得 解法二:,由此得得 所以, 【点评】本题主要考查三角形的正弦定理、余弦定理、三角形内角和定理及等差、等比数列的定义,考查转化思想和运算求解能力,属于容易题.第二小题既可以利用正弦定理把边的关系转化为角的关系,也可以利用余弦定理得到边之间的关系,再来求最后的结果. 11. 【解析】 解:(1)证明:由 及正弦定理得: , 即 整理得:,所以,又 所以 (2)由(1)及可得,又 所以, 所以三角形ABC的面积 【点评】本题考查解三角形,三角形的面积,三角恒等变换、三角和差公式以及正弦定理的应用.高考中,三角解答题一般有两种题型:一、解三角形:主要是运用正余弦定理来求解边长,角度,周长,面积等;二、三角函数的图像与性质:主要是运用和角公式,倍角公式,辅助角公式进行三角恒等变换,求解三角函数的最小正周期,单调区间,最值(值域)等.来年需要注意第二种题型的考查. 12. 【答案】解:(1),即. 由正弦定理,得,. 又,.即. (2) ,. ,即. 由 (1) ,得,解得. ,. 【考点】平面微量的数量积,三角函数的基本关系式,两角和的正切公式,解三角形. 【解析】(1)先将表示成数量积,再根据正弦定理和同角三角函数关系式证明. (2)由可求,由三角形三角关系,得到,从而根据两角和的正切公式和(1)的结论即可求得A的值. 13. 【命题意图】本试题主要考查了解三角形的运用,给出两个公式,一个是边的关系,一个角的关系,而求解的为角,因此要找到角的关系式为好. 【解析】由, 由正弦定理及可得 所以 故由与可得 而为三角形的内角且,故,所以,故. 【点评】该试题从整体来看保持了往年的解题风格,依然是通过边角的转换,结合了三角形的内角和定理的知识,以及正弦定理和余弦定理,求解三角形中的角的问题.试题整体上比较稳定,思路也比较容易想,先将三角函数关系式化简后,得到角关系,然后结合,得到两角的二元一次方程组,自然很容易得到角的值. 2011年高考题一、选择题1.(重庆理6)若ABC的内角A、B、C所对的边a、b、c满足,且C=60,则ab的值为 A B C 1 D【答案】A2.(浙江理6)若,则A B C D【答案】C3.(天津理6)如图,在中,是边上的点,且,则的值为A B C D【答案】D4.(四川理6)在ABC中则A的取值范围是 A(0, B ,) C(0, D ,)【答案】C【解析】由题意正弦定理5.(山东理6)若函数 (0)在区间上单调递增,在区间上单调递减,则= A3 B2 C D【答案】C6.(山东理9)函数的图象大致是【答案】C7.(全国新课标理5)已知角的顶点与原点重合,始边与x轴的正半轴重合,终边在直线上,则=(A) (B) (C) (D)【答案】B8.(全国大纲理5)设函数,将的图像向右平移个单位长度后,所得的图像与原图像重合,则的最小值等于A B C D【答案】C9.(湖北理3)已知函数,若,则x的取值范围为A BC D【答案】B10.(辽宁理4)ABC的三个内角A,B,C所对的边分别为a,b,c,asinAsinB+bcos2A=,则(A) (B) (C) (D)【答案】D11.(辽宁理7)设sin,则(A) (B) (C) (D)【答案】A12.(福建理3)若tan=3,则的值等于A2 B3 C4 D6【答案】D13.(全国新课标理11)设函数的最小正周期为,且则(A)在单调递减 (B)在单调递减(C)在单调递增 (D)在单调递增【答案】A14.(安徽理9)已知函数,其中为实数,若对恒成立,且,则的单调递增区间是(A) (B)(C) (D)【答案】C二、填空题15.(上海理6)在相距2千米的两点处测量目标,若,则两点之间的距离是 千米。【答案】16.(上海理8)函数的最大值为 。【答案】17.(辽宁理16)已知函数=Atan(x+)(),y=的部分图像如下图,则 【答案】18.(全国新课标理16)中,则AB+2BC的最大值为_【答案】19.(重庆理14)已知,且,则的值为_【答案】20.(福建理14)如图,ABC中,AB=AC=2,BC=,点D 在BC边上,ADC=45,则AD的长度等于_。【答案】21.(北京理9)在中。若b=5,tanA=2,则sinA=_;a=_。【答案】22.(全国大纲理14)已知a(,),sin=,则tan2= 【答案】23.(安徽理14)已知 的一个内角为120o,并且三边长构成公差为4的等差数列,则的面积为_.【答案】24.(江苏7)已知 则的值为_【答案】三、解答题25.(江苏9)函数是常数,的部分图象如图所示,则f(0)= 【答案】26.(北京理15)已知函数。()求的最小正周期:()求在区间上的最大值和最小值。解:()因为所以的最小正周期为()因为于是,当时,取得最大值2;当取得最小值1.27.(江苏15)在ABC中,角A、B、C所对应的边为(1)若 求A的值;(2)若,求的值.本题主要考查三角函数的基本关系式、两角和的正弦公式、解三角形,考查运算求解能力。解:(1)由题设知,(2)由故ABC是直角三角形,且.28.(安徽理18)在数1和100之间插入个实数,使得这个数构成递增的等比数列,将这个数的乘积记作,再令.()求数列的通项公式;()设求数列的前项和.本题考查等比和等差数列,指数和对数的运算,两角差的正切公式等基本知识,考查灵活运用知识解决问题的能力,综合运算能力和创新思维能力.解:(I)设构成等比数列,其中则 并利用(II)由题意和(I)中计算结果,知另一方面,利用得所以29(福建理16)已知等比数列an的公比q=3,前3项和S3=。(I)求数列an的通项公式;(II)若函数在处取得最大值,且最大值为a3,求函数f(x)的解析式。本小题主要考查等比数列、三角函数等基础知识,考查运算求解能力,考查函数与方程思想,满分13分。 解:(I)由解得所以(II)由(I)可知因为函数的最大值为3,所以A=3。因为当时取得最大值,所以又 所以函数的解析式为30.(广东理16)已知函数(1)求的值;(2)设求的值解:(1); (2)故31.(湖北理16)设的内角A、B、C、所对的边分别为a、b、c,已知()求的周长()求的值本小题主要考查三角函数的基本公式和解斜三角形的基础知识,同时考查基本运算能力。(满分10分)解:()的周长为 (),故A为锐角,32.(湖南理17)在ABC中,角A,B,C所对的边分别为a,b,c,且满足csinA=acosC()求角C的大小;()求sinA-cos(B+)的最大值,并求取得最大值时角A、B的大小。解析:(I)由正弦定理得因为所以(II)由(I)知于是取最大值2综上所述,的最大值为2,此时33.(全国大纲理17) ABC的内角A、B、C的对边分别为a、b、c己知AC=90,a+c=b,求C 解:由及正弦定理可得 3分 又由于故 7分 因为, 所以 34.(山东理17)在ABC中,内角A,B,C的对边分别为a,b,c已知 (I)求的值; (II)若cosB=,b=2,的面积S。 解: (I)由正弦定理,设则所以即,化简可得又,所以因此 (II)由得由余弦定理解得a=1。因此c=2又因为所以因此35.(陕西理18)叙述并证明余弦定理。解 余弦定理:三角形任何一边的平方等于其他两边平方的和减去这两边与他们夹角的余弦之积的两倍。或:在ABC中,a,b,c为A,B,C的对边,有证法一 如图即同理可证证法二 已知ABC中A,B,C所对边分别为a,b,c,以A为原点,AB所在直线为x轴,建立直角坐标系,则, 同理可证36.(四川理17)已知函数(1)求的最小正周期和最小值;(2)已知,求证:解析:(2)37.(天津理15)已知函数()求的定义域与最小正周期;(II)设,若求的大小本小题主要考查两角和的正弦、余弦、正切公式,同角三角函数的基本关系,二倍角的正弦、余弦公式,正切函数的性质等基础知识,考查基本运算能力.满分13分. (I)解:由, 得.所以的定义域为的最小正周期为 (II)解:由得整理得因为,所以因此由,得.所以38.(浙江理18)在中,角所对的边分别为a,b,c已知且()当时,求的值;()若角为锐角,求p的取值范围;本题主要考查三角变换、正弦定理、余弦定理等基础知识,同时考查运算求解能力。满分14分。 (I)解:由题设并利用正弦定理,得解得 (II)解:由余弦定理,因为,由题设知39.(重庆理16)设,满足,求函数在上的最大值和最小值.解: 由因此当为增函数,当为减函数,所以又因为故上的最小值为2010年高考题一、选择题1.(2010浙江理)(9)设函数,则在下列区间中函数不存在零点的是(A) (B) (C) (D)答案 A解析:将的零点转化为函数的交点,数形结合可知答案选A,本题主要考察了三角函数图像的平移和函数与方程的相关知识点,突出了对转化思想和数形结合思想的考察,对能力要求较高,属较难题2.(2010浙江理)(4)设,则“”是“”的(A)充分而不必要条件 (B)必要而不充分条件(C)充分必要条件 (D)既不充分也不必要条件答案 B解析:因为0x,所以sinx1,故xsin2xxsinx,结合xsin2x与xsinx的取值范围相同,可知答案选B,本题主要考察了必要条件、充分条件与充要条件的意义,以及转化思想和处理不等关系的能力,属中档题3.(2010全国卷2文)(3)已知,则 (A)(B)(C)(D)【解析】B:本题考查了二倍角公式及诱导公式, sina=2/3,4.(2010福建文)计算的结果等于( )A B C D【答案】B【解析】原式=,故选B【命题意图】本题三角变换中的二倍角公式,考查特殊角的三角函数值5.(2010全国卷1文) (1)(A) (B)- (C) (D) 【答案】 C【命题意图】本小题主要考查诱导公式、特殊三角函数值等三角函数知识【解析】6.(2010全国卷1理)(2)记,那么A. B. - C. D. -7.(2010全国卷2理)(7)为了得到函数的图像,只需把函数的图像(A)向左平移个长度单位 (B)向右平移个长度单位(C)向左平移个长度单位 (D)向右平移个长度单位【答案】B 【命题意图】本试题主要考查三角函数图像的平移.【解析】=,=,所以将的图像向右平移个长度单位得到的图像,故选B.8.(2010陕西文)3.函数f (x)=2sinxcosx是(A)最小正周期为2的奇函数(B)最小正周期为2的偶函数(C)最小正周期为的奇函数(D)最小正周期为的偶函数【答案】C解析:本题考查三角函数的性质f (x)=2sinxcosx=sin2x,周期为的奇函数9.(2010辽宁文)(6)设,函数的图像向右平移个单位后与原图像重合,则的最小值是(A) (B) (C) (D) 3【答案】 C解析:选C.由已知,周期10.(2010辽宁理)(5)设0,函数y=sin(x+)+2的图像向右平移个单位后与原图像重合,则的最小值是(A) (B) (C) (D)3 【答案】C【命题立意】本题考查了三角函数图像的平移变换与三角函数的周期性,考查了同学们对知识灵活掌握的程度。【解析】将y=sin(x+)+2的图像向右平移个单位后为,所以有=2k,即,又因为,所以k1,故,所以选C11.(2010重庆文)(6)下列函数中,周期为,且在上为减函数的是(A) (B)(C) (D)【答案】 A解析:C、D中函数周期为2,所以错误 当时,函数为减函数而函数为增函数,所以选A12.(2010重庆理)(6)已知函数的部分图象如题(6)图所示,则A. =1 = B. =1 =- C. =2 = D. =2 = -解析: 由五点作图法知,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论