已阅读5页,还剩12页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2018年高考数学圆锥曲线压轴专项练习集(一)1.设分别是直线和上的两个动点,并且,动点满足,记动点的轨迹为。(1)求曲线的方程;(2)若点的坐标为,是曲线上的两个动点,并且,求实数的取值范围;(3)是曲线上的任意两点,并且直线不与轴垂直,线段的中垂线交轴于点,求的取值范围。2.如图,已知椭圆:的离心率为,、为椭圆的左右顶点,焦点到短轴端点的距离为2,、为椭圆上异于、的两点,且直线的斜率等于直线斜率的2倍()求证:直线与直线的斜率乘积为定值;()求三角形的面积的最大值3.已知椭圆E:(ab0)的离心率e,左、右焦点分别为F1、F2,点P(2,),点F2在线段PF1的中垂线上 (1)求椭圆E的方程; (2)设l1,l2是过点G(,0)且互相垂直的两条直线,l1交E于A, B两点,l2交E于C,D两点,求l1的斜率k的取值范围; (3)在(2)的条件下,设AB,CD的中点分别为M,N,试问直线MN是否恒过定点?若经过,求出该定点坐标;若不经过,请说明理由。4.已知圆E:x2+(y)2=经过椭圆C:+=1(ab0)的左右焦点F1,F2,且与椭圆C在第一象限的交点为A,且F1,E,A三点共线,直线l交椭圆C于M,N两点,且=(0)(1)求椭圆C的方程;(2)当三角形AMN的面积取得最大值时,求直线l的方程5.已知:一动圆过且与圆A:相切。(1)证明动圆圆心P的轨迹是双曲线,并求其方程;(2)过点B作直线交双曲线右支于、两点,是否存在的值,使得 成为以为直角的等腰三角形,若存在则求出的值,若不存在则说明理由。6.已知椭圆C的离心率为,F1,F2分别为椭圆的左右焦点,P为椭圆上任意一点,PF1F2的周长为4+2,直线l:y=kx+m(k0)与椭圆C相交于A,B两点()求椭圆C的标准方程;()若直线l与圆x2+y2=1相切,过椭圆C的右焦点F2作垂直于x轴的直线,与椭圆相交于M,N两点,与线段AB相交于一点(与A,B不重合)求四边形MANB面积的最大值及取得最大值时直线l的方程;()若|AB|=2,试判断直线l与圆x2+y2=1的位置关系7.如图已知椭圆的离心率为,直线过椭圆C的右焦点F,且交椭圆C于A,B两点,点A,F,B在直线上的射影依次为D,K,E。(1)求椭圆C的方程;(2)试探索当变化时,直线AE是否经过一定点N?若是求出N的坐标并给予证明;否则说明理由。(3)设梯形ABED的面积为的面积为,求最小值。8.已知椭圆E:的左焦点为F,左准线与x轴的交点是圆C的圆心,圆C恰好经过坐标原点O,设G是圆C上任意一点.(1)求圆C的方程;(2)若直线FG与直线交于点T,且G为线段FT的中点,求直线FG被圆C所截得的弦长;(3)在平面上是否存在一点P,使得?若存在,求出点P坐标;若不存在,请说明理由.9.已知椭圆C的中心在原点,焦点在x轴上,离心率为,它的一个顶点恰好是抛物线x2=4y的焦点(I)求椭圆C的方程;()直线x=2与椭圆交于P,Q两点,P点位于第一象限,A,B是椭圆上位于直线x=2两侧的动点(i)若直线AB的斜率为,求四边形APBQ面积的最大值;(ii)当点A,B运动时,满足APQ=BPQ,问直线AB的斜率是否为定值,请说明理由10.如图,直线与抛物线(常数)相交于不同的两点、,且(为定值),线段的中点为,与直线平行的切线的切点为(不与抛物线对称轴平行或重合且与抛物线只有一个公共点的直线称为抛物线的切线,这个公共点为切点)(1)用、表示出点、点的坐标,并证明垂直于轴;(2)求的面积,证明的面积与、无关,只与有关;(3)小张所在的兴趣小组完成上面两个小题后,小张连、,再作与、平行的切线,切点分别为、,小张马上写出了、的面积,由此小张求出了直线与抛物线围成的面积,你认为小张能做到吗?请你说出理由试卷答案1.(1)设:ks5u,ks5u又,即所求曲线方程为 (2)设:,则由可得故 在曲线上,消去,得,又解得又且 (3)设直线为,则得:解得:且则直线为由在直线上由得2.解:(),故()当直线的斜率存在时,设:与轴的交点为,代入椭圆方程得,设,则,由,得,得,得或或,所以过定点或,点为右端点,舍去,令(),当直线的斜率不存在时,即,解得,所以的最大值为.3.略4.【考点】直线与圆锥曲线的关系;椭圆的标准方程【专题】圆锥曲线的定义、性质与方程【分析】(1)由题意把焦点坐标代入圆的方程求出c,再由条件得F1A为圆E的直径求出|AF1|=3,根据勾股定理求出|AF2|,根据椭圆的定义和a2=b2+c2依次求出a和b的值,代入椭圆方程即可;(2)由(1)求出A的坐标,根据向量共线的条件求出直线OA的斜率,设直线l的方程和M、N的坐标,联立直线和椭圆方程消去y,利用韦达定理和弦长公式求出|MN|,由点到直线的距离公式求出点A到直线l的距离,代入三角形的面积公式求出AMN的面积S的表达式,化简后利用基本不等式求出面积的最大值以及对应的m,代入直线l的方程即可【解答】解:(1)如图圆E经过椭圆C的左右焦点F1,F2,c2+(0)2=,解得c=,(2分)F1,E,A三点共线,F1A为圆E的直径,则|AF1|=3,AF2F1F2,=98=1,2a=|AF1|+|AF2|=3+1=4,a=2由a2=b2+c2得,b=,(4分)椭圆C的方程是;(2)由(1)得点A的坐标(,1),(0),直线l的斜率为kOA=,(6分)则设直线l的方程为y=x+m,设M(x1,y1),N(x2,y2),由得,x1+x2=,x1x2=m22,且=2m24m2+80,解得2m2,(8分)|MN|=|x2x1|=,点A到直线l的距离d=,AMN的面积S=,(10分)当且仅当4m2=m2,即m=,直线l的方程为(12分)【点评】本题考查椭圆的标准方程,韦达定理和弦长公式,向量共线条件,以及直线、圆与椭圆的位置关系等,考查的知识多,综合性强,考查化简计算能力,属于中档题5. 略6.【考点】椭圆的简单性质【分析】()由题意列关于a,b,c的方程组,求解方程组可得a,b的值,则椭圆C的方程可求;()由已知求出MN的长度,然后,由直线和圆相切得到m,k的关系,再联立直线方程和椭圆方程,求出A,B的横坐标,代入四边形面积公式,利用基本不等式求得最值,并得到使四边形ACBD的面积有最大值时的m,k的值,从而得到直线l的方程()由|AB|=2,得到m,k的关系,再用m,k表示圆心到直线l的距离d,求出d的取值范围即可【解答】(本小题满分14分)解:( I)设椭圆的方程为,由题可知,解得,所以椭圆C的方程为( II)令,解得,所以|MN|=1,直线l与圆x2+y2=1相切可得,即k2+1=m2,联立直线与椭圆的方程,整理得(1+4k2)x2+8kmx+4m24=0所以将k2+1=m2代入可得当且仅当,即时,等号成立,此时所以,当时,四边形MANB的面积具有最大值,直线l方程是或( III)整理得,所以设圆心到直线l的距离为d,则设1+k2=t,t1,则k2=t1,所以当,即时,d2=1,所以当时,直线l与圆相切,当,时,直线l与圆相交7.8.(1)由椭圆E:,得:,又圆C过原点,所以圆C的方程为4分(2)由题意,得,代入,得,所以的斜率为,的方程为, 8分(注意:若点G或FG方程只写一种情况扣1分)所以到的距离为,直线被圆C截得弦长为故直线被圆C截得弦长为710分(3)设,则由,得,整理得,12分又在圆C:上,所以,代入得, 14分又由为圆C 上任意一点可知,解得所以在平面上存在一点P,其坐标为 16分9.考点: 直线与圆锥曲线的关系;椭圆的标准方程专题: 圆锥曲线中的最值与范围问题分析: (I)设椭圆C的方程为 +=1(ab0),由条件利用椭圆的性质求得 b和a的值,可得椭圆C的方程()(i)设AB的方程为y=x+t,代入椭圆C的方程化简,由0,求得t的范围,再利用利用韦达定理可得 x1+x2 以及x1+x2 的值再求得P、Q的坐标,根据四边形APBQ的面积S=SAPQ+SBPQ=PQ|x1x2|,计算求得结果(ii)当APQ=BPQ时,PA、PB的斜率之和等于零,PA的方程为y1=k(x2),把它代入椭圆C的方程化简求得x2+2=再把直线PB的方程椭圆C的方程化简求得x2+2 的值,可得 x1+x2 以及x1x2 的值,从而求得AB的斜率K的值解答: 解:设椭圆C的方程为 +=1(ab0),由题意可得它的一个顶点恰好是抛物线x2=4y的焦点(0,),b=再根据离心率=,求得a=2,椭圆C的方程为 +=1()(i)设A( x1,y1 ),B( x2,y2),AB的方程为y=x+t,代入椭圆C的方程化简可得 x2+2tx+2t24=0,由=4t24(2t24)0,求得2t2利用韦达定理可得 x1+x2=2t,x1+x2=2t24在 +=1中,令x=2求得P(2,1),Q(2,1),四边形APBQ的面积S=SAPQ+SBPQ=PQ|x1x2|=2|x1x2|=|x1x2|=,故当t=0时,四边形APBQ的面积S取得最小值为4(ii)当APQ=BPQ时,PA、PB的斜率之和等于零,设PA的斜率为k,则 PB的斜率为k,PA的方程为y1=k(x2),把它代入椭圆C的方程化简可得(1+4k2)x2+8k(12k)x+4(12k)28=0,x2+2=同理可得直线PB的方程为y1=k(x2),x2+2=,x1+x2=,x1x2=,AB的斜率K=点评: 本题主要考查求圆锥曲线的标准方程,圆锥曲线的定义、性质的应用,直线和圆锥曲线相交的性质,直线的斜率公式、韦达定理的应用
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024北京三十五中高三8月月考化学试题及答案
- 户外运动俱乐部活动策划与会员管理
- 可靠性分析工程师技能要求及培训计划
- 心理咨询师年度工作计划与心理健康服务方案
- 图书馆管理员日常工作安排与资源管理计划
- 固废处理技术员年度培训计划
- 心理咨询师心理咨询技巧培训计划
- 咖啡店老板经营与管理秘籍
- 干部调配干部调配工作宣传方案
- 威海热电求职必-备不同岗位面试技巧与策略
- 流浪未成年人救助保护中心建设标准
- 工业信号波峰提取
- 交通标识牌施工合同范本
- DB37T3448.7“爱山东”政务服务平台 第7部分:业务中台对接规范
- 广西工程建设地方标准《跨坐式单轨连续轨道梁施工技术规程》
- 医院采购管理SOP
- 杜威《民主主义与教育》电子版
- 口腔颌面影像学
- 2020北师大版高中英语选择性必修三课文翻译(全册精校)
- 离婚协议书完整版Word模板下载
- 电气接线工艺培训
评论
0/150
提交评论