蜡印废水处理工艺技术开题报告.doc_第1页
蜡印废水处理工艺技术开题报告.doc_第2页
蜡印废水处理工艺技术开题报告.doc_第3页
蜡印废水处理工艺技术开题报告.doc_第4页
蜡印废水处理工艺技术开题报告.doc_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

本科毕业设计(论文)开题报告题目: 蜡印废水处理工艺技术 课 题 类 型: 设计 实验研究 论文 学 生 姓 名: 许轩学 号: 31204060213专 业 班 级: 环境工程122学 院: 生化学院指 导 教 师: 魏翔开 题 时 间: 2016年3月4号2016年3月15日一、 本课题的研究内容及意义在纺织工业中会产生各种废水,其中以印染废水污染较为严重,其排放量约占工业废水总量的1/10,我国每年约有67亿t印染废水排入水环境中,是当前最主要的水体污染源之一,因此印染废水的综合治理已成为一个迫切需要解决的问题。印染废水主要由退浆废水、煮练废水、漂白废水、丝光废水、染色废水和印花废水等组成,其特点是成分复杂,色度高,有毒物质多,属于含有一定量有毒物质的有机废水,主要含有残留染料、印染助剂、酸碱调节剂和一些重金属离子,化学需氧量COD较高,而生化需氧量BOD5相对较小,可生化性差,是当前国内外公认的较难处理的工业废水之一1。印染废水含大量的有机污染物,排入水体将消耗溶解氧,破坏水生态平衡,危及鱼类和其它水生生物的生存。沉于水底的有机物,会因为氧分解而产生硫化氢等有害气体,恶化环境。印染废水的色泽深,严重影响受纳水体外观,用一般的生化法难以去除,有色水体还会影响日光的透射,不利于水生物的生长。水是一种易受污染而可以再生的自然资源。为了使这个自然水循环能够持续地为人类服务,水在使用后回归自然界前,必须进行废水的再生处理,使水质达到自然界自净能力的承受水平,恢复其作为自然资源的属性。2二、蜡印废水处理工艺的研究现状和发展趋势(文献综述)2.1研究现状20世纪90年代以来,我国经济高速发展,人民生活水平不断提高,但环境污染问题并未得到有效控制,在有些地区反而呈现加重的趋势。据报道,我国每年污水的排放量约为3. 91010t,其中工业废水占51%,并以1%的速率逐年递增3。随着工业化进程的不断深入,全球性环境污染日益破坏着地球生物圈几亿年来所形成的生态平衡,并对人类自身的生存环境造成了严重威胁。由于逐年加重的环境压力,世界各国纷纷制定各自的环保法律、法规和采取不同的措施,我国政府对环境问题也高度重视,并向国际社会全球性环境保护公约做出了自己的承诺。我国是纺织印染的第一大国,而纺织印染行业又是工业废水的大户,故有此而造成的生态破坏及经济损失是不可估量的,因而要实现印染行业的可持续发展,必须首先解决印染行业的污染问题。42.2发展趋势目前印染废水的处理逐渐向膜法和其它处理技术相结合发展。工程师与研究人员不断开始研制新的超滤膜,改善超滤膜的材质,孔径大小等方面性能,主要为了降低膜的制作成本,提高过滤效能。然而膜法仍然具有它的缺点,只采用透过液反冲洗的清洗方法已不能保持膜的通量稳定,需采用药剂清洗,膜的污染比较严重,这一问题尚未很好的解决。而且,国内目前还未开发出高质量的超滤膜装置,需从国外引进成套的工艺设备,价格必然不菲。因此如何降低成本,保持膜的稳定性能是未来研究的重点5。2.3印染废水的处理方法2.3.1吸附法吸附法是应用较多的物理处理方法。该方法采用多孔状物质的粉末或颗粒与印染废水混合,或使废水通过由颗粒状物质组成的滤床,使废水中染料、助剂等污染物质吸附于多孔物质表面等而除去。吸附技术特别适合低浓度印染废水的深度处理,在工艺上具有投资小,方法简便易行,成本较低的优点。吸附法在实际应用过程中应重点考虑吸附剂的选择、吸附剂的再生以及废吸附剂的后处理,以提高处理效果,降低处理成本和减少二次污染。常用的吸附剂主要有活性炭、离子交换纤维、炉灰、各种天然矿物、工业废料及天然植物废料等,一些合成无机吸附剂也被应用于处理印染废水,如含有SiO2 的复合氧化物、合成Mg(OH)2 吸附剂等。由于印染废水的水质复杂,单一的吸附处理无法达到理想的处理效果,实际应用中需进一步开发适用性较广的吸附剂同时必须开发吸附技术与其它技术的组合工艺6,7。2.3.2化学氧化法化学氧化是目前研究较为成熟的方法。借助氧化还原作用破坏染料的共轭体系或发色基团是印染脱色处理的有效方法。除常规的氯氧化法外,国内外研究重点主要集中在臭氧化、超声波氧化、过氧化氢氧化、电解氧化和光氧化方面。氧化剂一般采用Fenton试剂、臭氧、氯气、次氯酸钠等。按氧化剂的不同,可将化学氧化分为:臭氧化法和芬顿试剂氧化法。氧化法是一种优良的印染废水脱色方法,但如果氧化程度不足,染料分子的发色基团可能被破坏而脱色,但其中的COD仍未除尽;若将染料分子充分氧化,能量、药剂量消耗可能会过大,成本太高。臭氧化法不产生污泥和二次污染,但是处理成本高,不适合大流量废水的处理,而且COD去除率低。通常很少采用单一的臭氧法处理印染废水,而是将它与其它方法相结合,彼此互补达到最佳的废水处理效果。所以氧化法一般用于氧化絮凝或絮凝氧化工艺8,9。2.3.3生物处理法生物处理法是利用微生物酶来氧化或还原有机物分子,通过一系列氧化、还原、水解、化合等生命活动,最终将废水中有机物降解成简单无机物或转化为各种营养物及原生质。生物法具有运行成本低、处理效果稳定等优点,在印染废水处理中得到了较为广泛的应用。常用的印染废水生物处理方法有厌氧法、好氧法、厌氧好氧组合法。好氧生物处理是在有氧条件下,利用好氧微生物的作用来去除印染废水中的有机物。活性污泥法、生物滤池、生物转盘、氧化沟、生物塘和膜生物反应(MBR)等都属于废水好氧生物处理法。强化生物铁活性污泥法,通过采取向曝气池中投加氢氧化铁,延长难降解物质的停留时间等措施,能大幅提高曝气池的活性污泥浓度和抗冲击负荷能力,降低污泥负荷,使单位数量菌团承担的有机物降解量减少,使菌胶团表面的有机物得到及时!充分的氧化降解,从而提高系统的脱色率和COD去除率。生物膜法是将微生物细胞固定在填料上,微生物附着于填料上生长、繁殖,在其上形成膜状生物污泥。与常规活性污泥法相比,生物膜法具有生物体体积浓度大,存活世代长,微生物种类繁多等优点,尤其适合于特种菌在印染废水体系中的投加使用。常用的生物膜法包括生物转盘、生物接触氧化法、生物滤池。厌氧生物法不仅可用于处理高浓度有机废水,也可用于处理中、低浓度有机废水,对染料中的偶氮基、蒽醌基和三苯甲烷基均可降解,但还不能完全分解一些活性染料的中间体,如致癌的芳香胺等。 由于厌氧生物法的出水水质往往达不到排放标准,因而单纯使用厌氧生物法的处理工艺较少,通常与好氧生物法串联使用。厌氧好氧组合处理工艺,能在一定程度上弥补好氧生物处理工艺的不足。难降解染料分子及其助剂在厌氧菌的作用下水解!酸化而分解成小分子有机物,接着被好氧菌分解成无机小分子。 通常厌氧段采用USB反应器,好氧段目前大多采用生物接触氧化法。间歇曝气活性污泥SBR工艺,采用间歇运行方式,废水间歇地进入处理系统并间歇地排出,充分利用兼性菌的作用,在同一反应器内程序地进行缺氧- 厌氧-好氧过程,抗负荷与毒物冲击能力显著增强,可实现高进水浓度!高容积负荷和高有机物去除率,在处理高浓度印染废水方面独具特色而且对氮、磷、硫的脱除效果亦十分显著9.10。2.3.4光化学氧化法光催化氧化法是利用某些物质在紫外光的作用下产生自由基,氧化染料分子而实现脱色。TiO2 光催化氧化法在PH值为3-11时产生O和OH,使染料分子迅速分解而获得很好的脱色效果。铁羧酸配合物光催化氧化法,以铁-草酸、铁-柠檬酸或铁-丁二酸络合物作催化剂,在紫外光照射下,光解生成烷基、羟基等多种自由基,使印染废水氧化脱色。光催化氧化技术以其具有常温常压操作、有害物质分解彻底、能耗及材料消耗低、无二次污染等优点,具有良好的应用前景 11,12。2.3.5膜分离技术膜分离技术处理印染废水是通过对废水中的污染物的分离、浓缩、回收而达到废水处理目的。具有不产生二次污染、能耗低、可循环使用、废水可直接回用等特点。膜分离技术虽然具有如此多的优点,但也存在着尚待解决的问题,如膜污染、膜通量、膜清洗、以及膜材质的抗酸碱、耐腐蚀性等问题,所以,现阶段运用单一的膜分离技术处理印染废水,回收纯净染料,还存在着技术经济等一系列问题。现在膜处理技术主要有超滤膜,纳米滤膜和反渗透膜。膜处理对印染废水中的无机盐和COD都有很好的去除作用13。2.3.6高能物理法 线辐照下产生一系列高活性粒子,有害物质得到降解.技术的特点是有机物的去除率高,备占地面积小,作简便,由于用来产生高能粒子的设备昂贵,术要求高,耗大,量利用率低,真正投入实际应用还有大量的问题需要解决14。三、课题研究方案及工作计划印染废水处理工艺中的厌氧水解处理工艺是利用产甲烷菌与水解产酸菌生长速度不同,在反应器中以水流动的淘洗作用,使甲烷菌在反应器中难以繁殖,将厌氧处理控制在反应时间短的第一阶段,即在大量水解细菌、产酸菌作用下,将不溶性有机物水解为可溶性有机物,将难生物降解的大分子物质转化为易生物降解的小分子物质。将厌氧水解处理作为各种生化处理的预处理,可提高污水生化性能,降低后续生物处理的负荷,因而被广泛运用在难生物降解的化工、造纸及有机物浓度高的食品废水处理中。此外,厌氧水解处理亦可用于城市污水处理厂,以水解池代替初沉池,减少后续处理构筑物曝气池的停留时间,从而降低工程投资。本课题采用厌氧水解处理,蜡染印染废水的处理工艺包括以下步骤:将污水收集至调节池;在调节池内设置曝气装置,调节PH值至89;在平流沉淀池前分别投加聚合氯化铵(PAC)和聚丙烯酰胺(PAM);在厌氧池内进行厌氧处理,并外加间歇式内循环回流;在接触氧化池内进行供氧;在沉淀池内进行泥水分离;将污泥浓缩池的污泥压缩采用水压式隔膜压滤机过滤,形成泥饼15。如图:工作计划:(1)、第12周:查阅相关资料,了解研究内容及现状,制订研究方案,拟订初步的工作计划;(2)、第34周:开题,完善研究方案;(3)、第514周:查阅相关资料和文献,进行相关图纸的绘制及计算;(4)、第1517周:编写毕业论文(5)、第18周:毕业论文答辩四、主要参考文献1孙政.印染废水水质特征及生物处理技术综述.煤矿现代化.2007年第一期2戴日成,张统,郭茜,曹健舞,蒋用印染废水水质特征及处理技术综述.工业给排水3耿云波,刘永红,赵鹏飞印染废水处理技术的应用及研究进展,工业用水与排水 Vo1.41 No.4 Aug.20104周瑶,郭超,杨波,前夕印染废水处理工艺,黑龙江环境通报 Vo1.34 No.2 Jun.20105肖冬雪,王兆慧,郭耀光,柳建设印染废水的处理方法及其发展趋势的探讨 CHINA POPULATION,RESOUCES AND ENVIRONMENT Vo1.21 20116赵宜江,张艳,嵇鸣,等.印染废水吸附脱色技术的研究进展j.水处理技术,2000,26(6):315-3197张建英,梁缘东,陈曙光,等,染色废水吸附混凝效应研究j,环境污染与防治,1998,20(3):9-128张艳,赵宜江,嵇鸣,等.印染废水物理化学脱色方法的研究进展j.水处理技术,2001,27(6):311-3149郑冀鲁,范娟,阮复昌,印染废水脱色技术与理论技术j.环境污染治理技术与设备,2000,1(5):29-35 10魏建斌,付永胜,朱杰,等.印染废水生物脱色研究现状及展望j.污染防治技术,2003,16(4):87-9111刘长春,张峰,毕学军.TiO2光催化氧化技术在废水处理中的应用j.污染防治技术,2003,16(4):111-11412罗凡,吴峰,邓南圣,等,铁()羧酸配合物对水溶性染料的光化学脱色动力学的比较研究j.环境科学与技术,1998(2):1-413刘梅红,纳滤膜技术处理印染废水实验研究j水处理技术,2002,28(1):42-4414李胜利,李劲.用高压脉冲放点等离子体处理印染废水的研究j.中国环境科学,1996,16(1):73-7615发明专利.孔建成.一种蜡印废水的处理工艺:中国,CN 104163549 A. 2014-081016Mustafa Isik Delia Teresa Sponza,Anaerobic/aerobic treatment of a simulated textile wastewater,ScienceDirect,Separation and Purifcation Technology 60(2008)64-7217ZHENG Xiang,FAN Yao-bo,WEI Yuan-song,A piloy scale anoxic/xic membrane bioreactor(A/O MBR) for woolen mill dyeing wastewater treatment,Journal of Environmental Sciences.Vol.15 No.4,pp.499-455,200318.Biotechnology & Bioprocess Enfineering Feb2014, Vol. 19 Issue 1, p191-200. 10p.19 Wool Textile Journal apr2015, Vol. 43 Issue 4, p41-44. 4p.20 Journal of the Serbian Chemical Society.2015, Vol. 80 Issue 1, p115-125. 11p.外文文献翻译英文部分Abstract In this study, the bacterial dynamics and structure compositions in the two-stage biological process of a full-scale printing and dyeing wastewater (PDW) treatment system were traced and analyzed by terminal restriction fragment length polymorphism (T-RFLP) and 454 pyrosequencing techniques. T-RFLP analysis showed that the microbial communities experienced significant variation in the process of seed sludge adaptation to the PDW environments and were in constant evolution during the whole running period of the system, despite the constant COD and color removal effects. Pyrosequencing results indicated that the two-stage biological system harbored rather diverse bacteria, with Proteobacteria being the predominant phylum during the steady running period, although its microbial compositions differed. The firststage aerobic tank was dominated by -Proteobacteria (89.05% of Proteobacteria), whereas in the second-stage aerobic tank, - and -Proteobacteria, besides -Proteobacteria, were the dominant bacterial populations.16 1. IntroductionPrinting and dyeing wastewater (PDW) has long been considered as an important and difficult-to-treat effluent due to its toxic, frequently changing, and bio-recalcitrant components such as dyes and dyeing additives, low ratio of BOD5/COD (around 20%), and high pH value (10 13). The current PDW treatment employed in China is a combination of physical-chemical and biological processes, in which various biological methods play principal roles and are capable of removing 40 50% of COD and 50 60% of color. However, during system startup or system running period, important problems such as reduced oncentration of activated sludge, sludge expansion, and formation of large amounts of foam frequently occur, resulting in a serious decrease in treatment efficiency or even collapse of the system. Bacteria are the dominant population in the activated sludge, and it is hypothesized that the dominant microorganisms play the most important roles in each stage of the system. Therefore, determination of the bacterial compositions corresponding to the stages of the system will be helpful for understanding and solving the above-mentioned problems. In recent years, various molecular biological techniques have been used for the analysis of microbial communities in various wastewater treatment systems. However, most of the previous studies had focused more on the relationship between functional stability and microbial community stability or the effects of running parameters on microbial compositions under the conditions of lab-scale bioreactors normally fed with synthetic wastewater. Only a few reports had examined fullscale industrial wastewater treatment systems, and even fewer had analyzed PDW treatment systems. Due to the frequently changing characteristics and complex compositions of PDW, understanding of the relationship between the microbial community dynamics and startup and stable running of the system is important for the design and operation of a PDW treatment system. The molecular biological techniques have some limitations in completely revealing the microbial compositions or tracking the evolution process of the microbial community in a wastewater treatment system. In our previous study on the dynamic changes in the microbial community in the PDW treatment system, PCR-DGGE (denaturing gradient gel electrophoresis) method was used. However, with the development of sequencing techniques, it has been noted that DGGE indicates only a minor part of the microbial population in an environment. Furthermore, some recently developed techniques such as terminal restriction fragment length polymorphisms (T-RFLP), real-time PCR, 454 pyrosequencing, etc., provide a possibility to obtain dynamic information or more accurate compositions of a microbial community. Therefore, in this study, T-RFLP and 454 pyrosequencing methods were used to trace and reveal the evolution processes of bacteria in a full-scale PDW biological treatment system during the establishment and commissioning periods. The results of this study are expected to form the basis of further research on the functions of the microbial populations in wastewater treatment systems17.2. Materials and Methods2.1. PDW treatment system and wastewater characteristicsThe PDW treatment system was established by Xinxiang Lianda Printing & Dyeing Co., Ltd (Xinxiang, China) in October 2009 for treating 1,000 tons of effluent every day. The system consisted of a coagulationprecipitation unit and a two-stage biological treatment process, including process 1 (an anaerobic hydrolytic and acidification unit (H1), an aerobic activated sludge treatment unit (O1), and a settling tank 1) and process 2 (an anaerobic hydrolytic and acidification unit (H2), an aerobic bio-contact oxidation unit (O2), and a settling tank 2), as shown in Supplementary Fig. 1. The seed sludge was collected from a municipal wastewater treatment plant and was first inoculated into O1 at the beginning of the system startup. H2 was started 23 days after O1 operation by inoculating a part of sludge from the settling tank 1 and a part of sludge from the same municipal wastewater treatment plant as that used for inoculating O1.The characteristics of PDW and the performance of the biological wastewater treatment system were continuously monitored for more than 6 months. The concentrations of COD, BOD5, colority, suspended solids (SS), total nitrogen (TN), total phosphates (TP), NH4+ -N, and pH were determined using standard methods 12. The characteristics of the wastewater are shown in Supplementary Table 1.2.2. Sludge samplesSludge samples were collected from the above-mentioned biological treatment units at different periods of operation, i.e., seed sludge (day 1 and day 23 for O1 and H2, respectively), after system startup (day 23 for both O1 and H1; day 29 for O2), and in the middle of operation (day 29 and day 185 for O1 and H1, respectively; day 185 for both O2 and H2). The samples from different treatment tanks were centrifuged at 12,000 rpm for 10 min at 4o C. The pellets were washed twice (each were centrifuged for 10 min at 12,000 rpm) with phosphate buffer (pH 7) and stored at 20for molecular analysis.2.3. DNA extractionThe total DNA was extracted from the sludge pellets by using the cetyltrimethylammonium bromide (CTAB) method 13. The yield and fragmentation of the crude or purified DNA were determined by agarose gel electrophoresis (1% w/v agarose) and UV visualization after ethidium bromide (EB) staining. The purified DNA was then stored at 20 for T-RFLP and pyrosequencing.2.4. PCR amplification of 16S rRNA genes for T-RFLPFor T-RFLP analysis, labeled forward primer 63F (labeled with 6-FAM (blue) (5-CAG GCC TAA CAC ATG CAA GTC-3) and unlabeled reverse primer 1389R (5-ACG GGC GGT GTG TAC AAG-3) were used 10. The PCR was conducted under the following conditions: 95for 5 min, followed by 30 cycles of 94 for 1 min, 55for 1 min, and 72 for 2 min, and a final extension at 72 for 10 min. The 1.3-kb 16S rRNA gene fragments obtained by PCR were purified from 1% agarose gels with a UNIQ10 column DNA purification kit (Sangon, China) according to the manufacturers recommendations18.2.5. T-RFLP analysis The labeled PCR products (10 L) were digested at 37for 16 h with AluI(AG/CT) and MspI(C/CGG), respectively. The reaction mixtures contained 2 L of 10 restriction enzyme buffer, 10 L of template, 1 L of AluI or MspI, and ultrapure water to a final volume of 20 L. The reactions were inactivated by incubation at 80 for 20 min for AluI and 65 for 20 min for MspI. The digested DNA was precipitated with 75 L of 95% ice-cold ethanol and 3 L of 3 M sodium acetate at 20 for 12 h, followed by spinning at 4,000 rpm and 4 in a micro centrifuge for 60 min. The DNA pellet was washed with 70% ice-cold ethanol, dried, and suspended in 9 L of sterile water for analysis 14. The TRFs were analyzed by Shanghai Gene Core Bio-Technologies Co., Ltd (Shanghai, China). The T-RFLP profiles were aligned by inspecting the electrophore to grams and by manual grouping of the peaks into categories. The presence or absence of peaks in the T-RFLP profiles was the basis for the construction of a pair wise Dice distance matrix for use in a non-parametric multidimensional scaling (NM-MDS) analysis utilizing the PC-Ord 5.0 software. 2.6. High-throughout 454 pyrosequencingThe composition of the PCR products of the V3 region of 16S rRNA gene was determined by 454 pyrosequencing by BGI (Shenzhen, China). The bacterial universal primer pair,27F (5-AGAGTTTGATCCTGGCTCAG-3) and 534R (5-ATTACCGCGGCTGCTGG-3), was used 15, and the samples used in this study were individually barcoded to enable multiplex sequencing. Following pyrosequencing, Python scripts were written to: (1) remove sequences containing more than one ambiguous base; (2) check the completeness of the barcodes and the adapter; and (3) remove sequences shorter than 150 bp 16. The effective sequences were analyzed by using RDP(Ribosomal Database Project, /) to construct the distance matrices, assign sequences to operational taxonomic units (OTUs, 97% similarity), and calculate Chao1 richness estimators 17. The sequences of the dominant OTUs were extracted to run BLAST and search relatives against “nr” database using the Internet automatically (/BLAST/). A phylogenetic tree was constructed using the neighbor joining method in MEGA version 4.1 using 1,000 bootstrap replications. The archaeon Methanobacterium formicicum was used as an out-group19.3. Results and Discussion3.1. Performance of the PDW treatment systemThe COD and color of the PDW were 646 5,056 mg/L and 80 650 dilutes, respectively. After coagulation and precipitation by using FeSO4 and poly-aluminum chloride (PAC), the COD and color reduced to 417 3,750 mg/L and 40 550 dilutes, with an average removal rate of 43.9and 38.5%, respectively. At the same time, the pH of the PDW was significantly reduced from 10.96 to 13.89 to around 8.50, which was necessary for the subsequent biological treatment. After the first-stage biological process, the COD and color were reduced to 174 902 mg/ L and30 80 dilutes, with removal efficiencies of 25 83.4% and 25 89.1%, respectively. Green was the most difficult color to decolorize, whereas black and blue were easier to remove. Subsequently, for further treatment, the effluents from the first-stage biological treatment process were fed into the second-stage treatment process that was composed of a hydrolysis tank and a biofilm contact oxidation tank. A further 10.8 53.9 and 25 66.7% reduction in COD and color were noted after this process, respectively, resulting in a final COD of 500 mg/L and color of 40 dilutes. After coagulation and the two steps of biological treatment, the total average removal rates of COD and color reached 85%, with the final color of the effluents satisfying the local discharge standards ( 50 dilutes). However, a residual COD of 146 492 mg/L was noted, which could be resolved through further treatment by using Fenton oxidation method.3.2. Dynamic changes in the bacterial community structure with system operationThe dynamic variation in the bacterial community was traced by using T-RFLP method (as shown in Supplementary Figs. 2 and 3). The T-RFLP profiles indicated diverse and fluctuating dominant bacterial populations in the collected samples. Analysis of Shannon diversity index on the T-RFLP profiles indicated that different treatment tanks of the system harbored diverse bacteria, with H = 0.83 1.20 and 0.71 1.07 for AluI and MspI restriction enzyme digestion maps, respectively. Samples from the first biological treatment process (O1 and H1) showed higher bacterial diversity than those from the second one (O2 and H2). The dominant peaks changed both in height and peak time among the seed sludge samples and steady running stage samples, especially those of the 185-day samples. Such different T-RFLP p

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论