




已阅读5页,还剩24页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
武汉理工大学MATLAB课程设计报告MATLAB课程设计报告题 目: 基于MATLAB的DSB调制与解调分析 专业班级: 通信1104班 学生姓名: 指导教师: MATLAB课程设计任务书学生姓名: 专业班级: 指导教师: 工作单位: 题目: 基于MATLAB的DSB调制与解调分析 设计内容和要求DSB信号的仿真分析调制信号:分别为300Hz正弦信号和矩形信号;载波频率:30kHz;解调:同步解调;要求:画出以下三种情况下调制信号、已调信号、解调信号的波形、频 谱以及解调器输入输出信噪比的关系曲线;1)调制信号幅度=0.8载波幅度;2)调制信号幅度=载波幅度;3)调制信号幅度=1.5载波幅度; 时间安排2013年12月25日:复习DSB的原理,初步构想设计的流程。2013年12月26日至28日:程序编写及调试。2013年12月29日:写报告。指导教师签名: 年 月 日 目录目录1摘要1Abstract21.DSB调制与解调原理31.1DSB调制原理31.2DSB解调原理与抗噪性能52.DSB调制解调分析的MATLAB实现72.1正弦波调制82.1.1调制信号幅度=0.8载波幅度102.1.2调制信号幅度=载波幅度122.1.3调制信号幅度=1.5*载波幅度142.2矩形波调制152.2.1调制信号幅度=0.8载波幅度182.2.2调制信号幅度=载波幅度202.2.3调制信号幅度=1.5*载波幅度213.模拟仿真结果分析234.小结与体会245.参考文献25 摘要 调制在通信系统中有十分重要的作用。通过调制,不仅可以进行频谱搬移,把调制信号的频谱搬移到所希望的位置上,从而将调制信号转换成适合于传播的已调信号,而且它对系统的传输有效性和传输的可靠性有着很大的影响,调制方式往往决定了一个通信系统的性能。MATLAB软件广泛用于数字信号分析,系统识别,时序分析与建模,神经网络、动态仿真等方面有着广泛的应用。本课题利用MATLAB软件对DSB调制解调系统进行模拟仿真,分别利用300HZ正弦波和矩形波,对30KHZ正弦波进行调制,观察调制信号、已调信号和解调信号的波形和频谱分布,并在解调时引入高斯白噪声,对解调前后信号进行信噪比的对比分析,估计DSB调制解调系统的性能。 AbstractModulation in communication systems have an important role. Through the modulation, not only can move the spectrum, the modulated signal spectrum move to the desired position, which will convert into a modulated signal suitable for transmission of modulated signals, and that its transmission system, the effectiveness and reliability of transmission has a great impact, the modulation method is often decided on a communication system performance. MATLAB software is widely used in digital signal analysis, system identification, time series analysis and modeling, neural networks, dynamic simulation have a wide range of applications. This topic using MATLAB software DSB modulation and demodulation system simulation, use, respectively, 300HZ sine wave and rectangular wave, sine wave modulation of the 30KHZ observed modulated signal modulated signal and demodulate the signal waveform and spectrum distribution, and in the solution white Gaussian noise introduced when adjusted for demodulating the signal-noise ratio before and after the comparative analysis, it is estimated DSB modulation and demodulation performance of the system.1.DSB调制与解调原理1.1DSB调制原理DSB调制属于幅度调制。幅度调制是用调制信号去控制高频载波的振幅,使其按调制信号的规律而变化的过程。设正弦型载波c(t)=Acos(t),式中:A为载波幅度,为载波角频率。根据调制定义,幅度调制信号(已调信号)一般可表示为:(t)=Am(t)cos(t)(公式1-1),其中,m(t)为基带调制信号。设调制信号m(t)的频谱为M(),则由公式1-1不难得到已调信号(t)的频谱():()= M(+)+M(-)。由以上表示式可见,在波形上,幅度已调信号随基带信号的规律呈正比地变化;在频谱结构上,它的频谱完全是基带信号频谱在频域内的简单搬移。标准振幅就是常规双边带调制,简称调幅(AM)。假设调制信号m(t)的平均值为0,将其叠加一个直流偏量后与载波相乘,即可形成调幅信号。其时域表达式为: (t)= +m(t)cos(t)式中:为外加的直流分量;m(t)可以是确知信号,也可以是随机信号。若为确知信号,则AM信号的频谱为AM信号的频谱由载频分量、上边带、下边带三部分组成。AM信号的总功率包括载波功率和边带功率两部分。只有边带功率才与调制信号有关,也就是说,载波分量并不携带信息。因此,AM信号的功率利用率比较低。AM调制典型波形和频谱如图1-1所示:图1-1 AM调制典型波形和频谱如果在AM调制模型中将直流去掉,即可得到一种高调制效率的调制方式抑制载波双边带信号(DSBSC),简称双边带信号。其时域表达式为(t)= m(t)cos(t)式中,假设的平均值为0。DSB的频谱与AM的谱相近,只是没有了在处的函数,即()=其典型波形和频谱如图1-2所示: 图1-2 DSB调制典型波形和频谱与AM信号比较,因为不存在载波分量,DSB信号的调制效率是100,即全部效率都用于信息传输。1.2DSB解调原理与抗噪性能解调是调制的逆过程,其作用是从接收的已调信号中恢复原基带信号(即调制信号)。解调的方法可分为两类:相干解调和非相干解调(包络检波)。相干解调,也称同步检波,为了无失真地恢复原基带信号,接收端必须提供一个与接收的已调载波严格同步(同频同相)的本地载波(称为相干载波),它与接受的已调信号相乘后,经低通滤波器取出低频分量,即可得到原始的基带调制信号。包络检波器就是直接从已调波的幅度中提取原调制信号,通常由半波或全波整流器和低通滤波器组成。由于DSB信号的包络不再与调制信号的变化规律一致,因而不能采用简单的包络检波来恢复调制信号。DSB信号解调时需采用相干解调。DSB相干解调性能分析模型如图1-3所示:图1-3 DSB相干解调性能分析模型设解调器输入信号为(t)= m(t)cos(t),与相干载波cos(t)相乘后,得,经低通滤波器后,输出信号为:。因此,解调器输出端的有用信号功率为解调DSB信号时,接收机中的带通滤波器的中心频率与调制频率相同,因此解调器输入端的窄带噪声,它与相干载波cos(t)相乘后,得 经低通滤波器后,解调器最终输出噪声为故输出噪声功率为式中,B=2,为DSB的带通滤波器的带宽,为噪声单边功率谱密度。解调器输入信号平均功率为可得解调器的输入信噪比 ,解调器的输出信噪比因此制度增益为,也就是说,DSB信号的解调器使信噪比改善一倍。2.DSB调制解调分析的MATLAB实现信号DSB调制采用MATLAB函数modulate实现,其函数格式为:Y = MODULATE(X,fc,fs,METHOD,OPT)X为基带调制信号,fc为载波频率,fs为抽样频率,METHOD为调制方式选择,DSB调制时为am,OPT在DSB调制时可不选,fs需满足fs 2*fc + BW,BW为调制信号带宽。DSB信号解调采用MATLAB函数demod实现,其函数使用格式为:X = DEMOD(Y,fc,fs,METHOD,OPT)Y为DSB已调信号,fc为载波频率,fs为抽样频率,METHOD为解调方式选择,DSB解调时为am,OPT在DSB调制时可不选。观察信号频谱需对信号进行傅里叶变换,采用MATLAB函数fft实现,其函数常使用格式为:Y=FFT(X,N),X为时域函数,N为傅里叶变换点数选择,一般取值。频域变换后,对频域函数取模,格式:Y1=ABS(Y),再进行频率转换,转换方法:f=(0:length(Y)-1)*fs/length(Y)分析解调器的抗噪性能时,在输入端加入高斯白噪声,采用MATLAB函数awgn实现,其函数使用格式为:Y =AWGN(X,S_N),加高斯白噪声于X中,S_N为信噪比,单位为dB,其值在假设X的功率为0dBM的情况下确定。信号的信噪比为信号中有用的信号功率与噪声功率的比值,根据信号功率定义,采用MATLAB函数var实现,其函数常使用格式为:Y =VAR(X),返回向量的方差,则信噪比为:S_N=VAR(X1)/VAR(X2)。 绘制曲线采用MATLAB函数plot实现,其函数常使用格式:PLOT(X,Y),X为横轴变量,Y为纵轴变量,坐标范围限定AXIS(x1 x2 y1 y2),轴线说明XLABEL( )和YLABEL( )。2.1正弦波调制用频率300HZ正弦波调制频率30KHZ的正弦波,采用同步解调,观察调制信号、已调信号、解调信号的波形、频谱以及解调器输入输出信噪比的关系。MATLAB源程序如下:fc=30000;fs=100000;N=1000;n=0:N-1;t=n/fs;x=A*sin(2*pi*300*t);y=modulate(x,fc,fs,am); %抑制双边带振幅调制fft1=fft(x,N); %傅里叶变换mag1=abs(fft1); %取模f1=(0:length(fft1)-1)*fs/length(fft1);fft2=fft(y,N);mag2=abs(fft2);f2=(0:length(fft2)-1)*fs/length(fft2);figure(1);subplot(2,2,1); plot(t,x); xlabel(调制信号波形)subplot(2,2,2); plot(f1,mag1); axis(0 600 0 600);xlabel(调制信号频谱)subplot(2,2,3); plot(t,y); xlabel(已调信号波形)subplot(2,2,4); plot(f2,mag2); axis(28000 32000 0 400);xlabel(已调信号频谱)% yn=awgn(y,4); %加入高斯白噪声znn=demod(y,fc,fs,am); %无噪声已调信号解调zn=demod(yn,fc,fs,am); %加噪声已调信号解调fft3=fft(znn,N);mag3=abs(fft3);f3=(0:length(fft3)-1)*fs/length(fft3);figure(2);subplot(3,1,1); plot(t,zn); xlabel(加噪声解调信号波形)subplot(3,1,2); plot(t,znn); xlabel(无噪声解调信号波形)subplot(3,1,3); plot(f3,mag3); axis(0 500 0 500); xlabel(解调信号频谱) % yn1=awgn(y,8);yn2=awgn(y,12);yn3=awgn(y,16);yn4=awgn(y,20);zn1=demod(yn1,fc,fs,am);zn2=demod(yn2,fc,fs,am);zn3=demod(yn3,fc,fs,am);zn4=demod(yn4,fc,fs,am);dyi=yn-y; %高斯白噪声s_ni=var(y)/var(dyi); %输入信噪比dyo=zn-znn; %解调后噪声s_no=var(znn)/var(dyo); %输出信噪比 dyi1=yn1-y; s_ni1=var(y)/var(dyi1); dyo1=zn1-znn; s_no1=var(znn)/var(dyo1); dyi2=yn2-y; s_ni2=var(y)/var(dyi2); dyo2=zn2-znn; s_no2=var(znn)/var(dyo2); dyi3=yn3-y; s_ni3=var(y)/var(dyi3); dyo3=zn3-znn; s_no3=var(znn)/var(dyo3); dyi4=yn4-y; s_ni4=var(y)/var(dyi4); dyo4=zn4-znn; s_no4=var(znn)/var(dyo4); in=s_ni,s_ni1,s_ni2,s_ni3,s_ni4; out=s_no,s_no1,s_no2,s_no3,s_no4;figure(3);plot(in,out,*)hold onplot(in,out)xlabel(输入信噪比); ylabel(输出信噪比) 2.1.1调制信号幅度=0.8载波幅度调用程序,程序中A=0.8。调制信号、已调信号的波形、频谱如图2-1所示:图2-1 调制信号、已调信号的波形、频谱图解调信号的波形、频谱如图2-2所示:图2-2解调信号的波形、频谱图输入输出信噪比关系曲线如图2-3所示:图2-3 输入输出信噪比关系曲线2.1.2调制信号幅度=载波幅度调用函数,函数中A=1。调制信号、已调信号的波形、频谱如图2-4所示:图2-4调制信号、已调信号的波形、频谱图解调信号的波形、频谱如图2-5所示:图2-5解调信号的波形、频谱图输入输出信噪比关系曲线如图2-6所示:图2-6 输入输出信噪比关系曲线2.1.3调制信号幅度=1.5*载波幅度调用程序,程序中A=1.5。调制信号、已调信号的波形、频谱如图2-7所示:图2-7调制信号、已调信号的波形、频谱图解调信号的波形、频谱如图2-8所示:图2-8解调信号的波形、频谱图输入输出信噪比关系曲线如图2-9所示:图2-9输入输出信噪比关系曲线2.2矩形波调制用频率300HZ矩形波调制频率30KHZ的正弦波,采用同步解调,观察调制信号、已调信号、解调信号的波形、频谱以及解调器输入输出信噪比的关系。MATLAB源程序如下:fc=30000; %载波频率fs=100000; %抽样频率 N=10000;n=0:N-1;t=n/fs;x=A*square(2*pi*300*t,50);y=modulate(x,fc,fs,am); %抑制双边带振幅调制fft1=fft(x,N); %傅里叶变换mag1=abs(fft1); %取模f1=(0:length(fft1)-1)*fs/length(fft1);fft2=fft(y,N);mag2=abs(fft2);f2=(0:length(fft2)-1)*fs/length(fft2);figure(1);subplot(2,2,1); plot(t,x); axis(0 0.1 -2 2); xlabel(调制信号波形)subplot(2,2,2); plot(f1,mag1); axis(0 5000 0 8000); xlabel(调制信号频谱)subplot(2,2,3); plot(t,y); axis(0 0.01 -2 2); xlabel(已调信号波形)subplot(2,2,4); plot(f2,mag2); axis(0 50000 0 8000); xlabel(已调信号频谱)% yn=awgn(y,4); %加入高斯白噪声znn=demod(y,fc,fs,am); %无噪声已调信号解调zn=demod(yn,fc,fs,am); %加噪声已调信号解调fft3=fft(znn,N);mag3=abs(fft3);f3=(0:length(fft3)-1)*fs/length(fft3);figure(2);subplot(3,1,1); plot(t,zn); xlabel(加噪声解调信号波形)subplot(3,1,2); plot(t,znn); xlabel(无噪声解调信号波形)subplot(3,1,3); plot(f3,mag3); axis(0 5000 0 4000); xlabel(解调信号频谱) %yn1=awgn(y,8);yn2=awgn(y,12);yn3=awgn(y,16);yn4=awgn(y,20);zn1=demod(yn1,fc,fs,am);zn2=demod(yn2,fc,fs,am);zn3=demod(yn3,fc,fs,am);zn4=demod(yn4,fc,fs,am);dyi=yn-y; %高斯白噪声s_ni=var(y)/var(dyi); %输入信噪比dyo=zn-znn; %解调后噪声s_no=var(znn)/var(dyo); %输出信噪比 dyi1=yn1-y; s_ni1=var(y)/var(dyi1); dyo1=zn1-znn; s_no1=var(znn)/var(dyo1); dyi2=yn2-y; s_ni2=var(y)/var(dyi2); dyo2=zn2-znn; s_no2=var(znn)/var(dyo2); dyi3=yn3-y; s_ni3=var(y)/var(dyi3); dyo3=zn3-znn; s_no3=var(znn)/var(dyo3); dyi4=yn4-y; s_ni4=var(y)/var(dyi4); dyo4=zn4-znn; s_no4=var(znn)/var(dyo4); in=s_ni,s_ni1,s_ni2,s_ni3,s_ni4; out=s_no,s_no1,s_no2,s_no3,s_no4;figure(3);plot(in,out,*)hold onplot(in,out)xlabel(输入信噪比); ylabel(输出信噪比)2.2.1调制信号幅度=0.8载波幅度调用程序,程序中A=0.8。调制信号、已调信号的波形、频谱如图2-10所示:图2-10 调制信号、已调信号的波形、频谱图解调信号的波形、频谱如图2-11所示:图2-11 解调信号的波形、频谱图输入输出信噪比关系曲线如图2-12所示:图2-12 输入输出信噪比关系曲线2.2.2调制信号幅度=载波幅度调用程序,程序中A=1。调制信号、已调信号的波形、频谱如图2-13所示:图2-13 调制信号、已调信号的波形、频谱图解调信号的波形、频谱如图2-14所示:图2-14 解调信号的
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 酒店服务实习报告范文
- 湘艺版二年级下册音乐 第二课 (演唱)粗心的小画家 教案
- 全球化视角下的医疗科技-以高效液相色谱的跨国合作与交流为例
- 智慧城市的数字孪生技术应用研究
- 中职新生入学课件
- 未来学校基于教育大数据的教学变革
- 2025届福建福州市物理高二第二学期期末联考试题含解析
- 进度款的支付流程与计算
- 江苏省沭阳县华冲高级中学2025年物理高二下期末质量检测试题含解析
- 中职教育的中国历史课件
- GB/T 700-2006碳素结构钢
- GB/T 41419-2022数字化试衣虚拟人体用术语和定义
- GB/T 24218.1-2009纺织品非织造布试验方法第1部分:单位面积质量的测定
- GB/T 1633-2000热塑性塑料维卡软化温度(VST)的测定
- 《病毒学》(研究生)全册配套完整课件
- 第十七章其他熔化焊接与热切割作业课件
- 手术讲解模板:肩关节全部置换术课件
- 腧穴总论 2特定穴课件
- 数显压力表说明书
- JJF 1255-2010 厚度表校准规范-(高清现行)
- DB4409∕T 06-2019 地理标志产品 化橘红
评论
0/150
提交评论