




全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2.3.3 直线与平面垂直的性质教学目标1.探究直线与平面垂直的性质定理,培养学生的空间想象能力、实事求是等严肃的科学态度和品质.2.掌握直线与平面垂直的性质定理的应用提高逻辑推理的能力.教学重、难点直线与平面垂直的性质定理及其应用.教学准备多媒体课件教学过程复习 直线与平面垂直的定义:一条直线和平面内的任何一条直线都垂直,我们说这条直线和这个平面互相垂直,直线叫做平面的垂线,平面叫做直线的垂面.直线和平面垂直的画法及表示如下:图1如图1,表示方法为:a.由直线与平面垂直的定义不难得出:ba.导入新课如图2,长方体ABCDABCD中,棱AA、BB、CC、DD所在直线都垂直所在的平面ABCD,它们之间具有什么位置关系?图2提出问题回忆空间两直线平行的定义.判断同垂直于一条直线的两条直线的位置关系?找出恰当空间模型探究同垂直于一个平面的两条直线的位置关系.用三种语言描述直线与平面垂直的性质定理.如何理解直线与平面垂直的性质定理的地位与作用?讨论结果:如果两条直线没有公共点,我们说这两条直线平行.它的定义是以否定形式给出的,其证明方法多用反证法.如图3,同垂直于一条直线的两条直线的位置关系可能是:相交、平行、异面.图3如图4,长方体ABCDABCD中,棱AA、BB、CC、DD所在直线都垂直于所在的平面ABCD,它们之间具有什么位置关系? 图4 图5棱AA、BB、CC、DD所在直线都垂直所在的平面ABCD,它们之间互相平行.直线和平面垂直的性质定理用文字语言表示为:垂直于同一个平面的两条直线平行,也可简记为线面垂直、线线平行.直线和平面垂直的性质定理用符号语言表示为:ba.直线和平面垂直的性质定理用图形语言表示为:如图5.直线与平面垂直的性质定理不仅揭示了线面之间的关系,而且揭示了平行与垂直之间的内在联系.应用示例例1 证明垂直于同一个平面的两条直线平行.解:已知a,b.求证:ab.图6证明:(反证法)如图6,假定a与b不平行,且b=O,作直线b,使Ob,ab.直线b与直线b确定平面,设=c,则Oc.a,b,ac,bc.ba,bc.又Ob,Ob,b,b,ab显然不可能,因此ba.例2 如图7,已知=l,EA于点A,EB于点B,a,aAB.求证:al.图7证明:l平面EAB.又a,EA,aEA.又aAB,a平面EAB.al.例2 如图8,已知直线ab,b,a.求证:a.图8证明:在直线a上取一点A,过A作bb,则b必与相交,设交点为B,过相交直线a、b作平面,设=a,bb,ab,ab.b,bb,b.又a,ba.由a,b,a都在平面内,且ba,ba知aa.a.例3 如图9,已知PA矩形ABCD所在平面,M、N分别是AB、PC的中点.(1)求证:MNCD;(2)若PDA=45,求证:MN面PCD.图9证明:(1)取PD中点E,又N为PC中点,连接NE,则NECD,NE=CD.又AMCD,AM=CD,AMNE.四边形AMNE为平行四边形.MNAE.CDAE.(2)当PDA=45时,RtPAD为等腰直角三角形,则AEPD.又MNAE,MNPD,PDCD=D.MN平面PCD.变式训练 已知a、b、c是平面内相交于一点O的三条直线,而直线l和平面相交,并且和a、b、c三条直线成等角.求证:l.证明:分别在a、b、c上取点A、B、C并使AO=BO=CO.设l经过O,在l上取一点P,在POA、POB、POC中,PO=PO=PO,AO=BO=CO,POA=POB=POC,POAPOBPOC.PA=PB=PC.取AB的中点D,连接OD、PD,则ODAB,PDAB.PDOD=D,AB平面POD.PO平面POD,POAB.同理,可证POBC.AB,BC,ABBC=B,PO,即l.若l不经过点O时,可经过点O作ll.用上述方法证明l,l.课堂小结知识总结:利用线面垂直的性质定理将线面垂直问题转化为线线平行,然后解决证明垂
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年北京市朝阳区高考地理二模试卷
- 2025年加气站设备项目建议书
- 农村合作社现代农业产业化合作协议
- 餐饮外卖O2O平台优化运营方案
- 精准职业工作经历证明(8篇)
- 家庭农场农机设备使用与租赁合同
- 高中化学实验:《化学反应动力学研究》实验方案
- 市政学模拟考试真题试题及答案
- 哮喘病人的麻醉管理
- 《2025升级版车辆买卖合同》
- DB22T 2004-2014 空气甲醛现场检测仪
- 国家建设部110号文件《住宅室内装饰装修管理办法》
- 第五课+弘扬劳动精神、劳模精神、工匠精神【中职专用】中职思想政治《职业道德与法治》高效课堂(高教版2023·基础模块)
- 餐饮食品安全操作规范
- 无人机组装与调试 课件 项目一 多旋翼无人机组装调试
- 《城市轨道交通 接触网用分段绝缘器》编制说明
- 三位数加减三位数竖式计算题300道及答案
- 幼儿园老师篮球培训
- 展览会垃圾处理及清运方案
- 医院捐赠合同范例
- (高清版)DB43∕T 484-2017 乡村旅游区(点)星级评定准则
评论
0/150
提交评论