可分离变量的微分方程.ppt_第1页
可分离变量的微分方程.ppt_第2页
可分离变量的微分方程.ppt_第3页
可分离变量的微分方程.ppt_第4页
可分离变量的微分方程.ppt_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第二节 可分离变量的微分方程 一、可分离变量的微分方程 二、典型例题 一、可分离变量的微分方程 形如 的方程,称为可分离变量 的微分方程. 分离变量,得: 设 y= (x) 是方程的解, 则有恒等式: 两边积分, 得 即: 设函数 G(y) 和 F(x) 是 g(y) 和 f(x) 的一个原函数 , 则有 当 G(y) 与F(x)可微且 G(y) =g(y)0时, 说明由确定的隐函数 y=(x) 是的解. 称为方程的隐式通解, 或通积分. 同样,当F(x) = f (x) 0时, 上述过程可逆, 由确定的隐函数 x=(y) 也是的解. 一、可分离变量的微分方程 形如 的方程,称为可分离变量 的微分方程. 求解步骤: (变量分离法) 1、分离变量,得 2、两边积分,得 3、求出通解 隐函数确定的微分方程的解 微分方程的隐式通解 例1 求解微分方程 解 分离变量 , 得 两端积分 , 得 二、典型例题 解得 例2 求解微分方程 解分离变量,得 两端积分,得 解得 解 分离变量,得 两端积分,得 解得 解 根据题意,有 (初始条件) 对方程分离变量, 即 利用初始条件, 得 故所求铀的变化规律为 然后积分: 解 根据牛顿第二定律 , 得 初始条件为 对方程分离变量 , 然后积分 : 得 利用初始条件,得 代入上式后化简, 得特解 例 设降落伞从跳伞塔下落后所受空气阻力与速度 成正比,并设降落伞离开跳伞塔时( t = 0 )速度为0, 求降落伞下落速度与时间的函数关系. t 足够大时 解 分离变量, 解得 然后积分 : 可分离变量的微分方程初值问题: 的解也可直接用变上限积分来确定: 分离变量法步骤: 1.分离变量; 2.两端积分隐式通解. 三、小结 若是求特解,还需根据初值条件定常数 . (1) 找出事物的共性及可贯穿于全过程的规律列方程. 常用的方法: 1) 根据几何关系列方程, 2) 根据物理规律列方程, 3) 根据微量分析平衡关系列方程. (2) 利用反映事物个性的特殊状态确定初值条件. (3) 求通解, 并根据初值条件确定特解. 3. 解微分方程应用题的方法和步骤 思考与练习 求方程的通解 : 提示: 方程变形为 练 习 题 练习题答案 例 9 有高为 1 m 的半球形容器 , 水从它的底部 小孔流出 , 小孔横截面积为 1 cm2 (如图). 开始时 容器内盛满了水 , 求水从小孔流出过程中容器里 水面的高度 h (水面与孔口中心间的距离) 随时间 t 的变化规律 . 解 由力学知识得,水从孔口流 出的流量为 流量系数孔口截面面积重力加速度 设在微小的时间间

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论