




全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
平行线等分线段定理一、知识点 1. 掌握平行线等分线段定理及其推论. 2. 会利用等分点作平行线,转化成与比例相关的问题.二、例题分析第一阶梯例1已知:在ABC中,D是AC的中点,DEBC交AB于点E,EFAC交BC于点F.求证:BF=CF.提示: (1)由已知条件可得几个中点?有几条平行线? (2)平行线等分线段定理及推论是如何叙述的? (3)此题有几种方法证明?请比较一下其方法之间的联系?参考答案: 证明:在ABC中,D是AC的中点,DEBC. E是AB的中点. (经过三角形一边的中点与另一边平行的直线必平分第三边). 又EFAC,交BC于F. F是BC的中点,即BF=FC.说明: (1)在三角形中,给了一边的中点和平行线,根据平行线等分线段定理的推论2,可得出平行线与另一边的交点即是中点. (2)此题也可以利用平行四边形和全等形来证明,但麻烦.例2求证在直角梯形中,两个直角顶点到对腰中点的距离相等. 已知:如图在梯形ABCD中,ADBC,ADC=90,E是AB边的中点,连结ED、EC.求证:ED=EC.提示: (1)对一个命题进行证明,首先要分清什么?再根据题意如何? (2)在梯形中,若已知一腰的中点,一般过这点作什么样的辅助线即可得到另一腰的中点. (3)请总结一下利用平行线等分线段定理及推论时所必备的条件和所得的结论分别是什么?参考答案: 证明:过E点作EFBC交DC于F. 在梯形ABCD中,ADBC. ADEFBC. E是AB的中点. F是DC的中点(经过梯形一腰中点与底平行的直线必平分另一腰). ADC=90 DFE=90 EFDC于F 又F是DC中点 EF是DC的垂直平分线 ED=EC(线段垂直平分线上的点到线段两端距离相等).说明: (1)命题证明要正确的理解题意,按题意画出图形.再根据图形,写出已知和求证. (2)此题作EF与DC垂直,证EFBC也可以.第二阶梯例1在ABCD中,E和F分别是BC和AD边的中点,BF和DE分别交AC于P、Q两点.求证:AP=PQ=QC.提示: (1)图形中可以得到几条平行线?与结论有关的平行线分别在哪几个三角形中?被平行线所截线段的位置有何特殊关系? (2)利用平行线和中点,可以得到三角形哪条边的中点? (3)平行四边形在此题中的作用是什么?如果把平行四边形改成梯形,结论成立吗?若改成其它的特殊四边形呢?参考答案: 证明:四边形ABCD是平行四边形,E、F分别是BC、AD边上的中点. 四边形BEDF是平行四边形(一组对边平行且相等的四边形定平行四边形) 在ADQ中,F是AD的中点,FPDQ. P是AQ的中点 AP=PQ. 在CPB中,E是BC的中点,EQBP. Q是CP的中点. CQ=PQ. AP=PQ=QC.说明: (1)此题两次利用了E、F是中点的条件. (2)在利用平行线等分线段定理或推论时要把平行和中点两个条件摆齐.例2已知:ABC中,CD平分ACB,AECD于E,EFBC交AB于F.求证:AF=BF.提示: (1) E点是DC边的中点吗?图形中E是什么点?直观上,你觉得图形完善吗? (2) 如何添加辅助线,使EF与某三角形的一边平行且E是其中一边的中点? (3) 在三角形中,一般的有角平分线的条件,就可以构选什么图形?参考答案: 证明:延长AE交BC于M. CD是ACB的平分线,AECE于E 在AEC与MEC中 AECMEC AE=EM E是AM的中点,又在ABM中FEBF. 点F是AB边的中点 AF=BF.说明: (1)一般情况下,几何图形应具有对称的内在美,当感觉上图形有些缺点时,就要添加适当的辅助线,使其完善此题中,AECE于E,恰在三角形内部,而RtAEC又不好用.所以延长AE与BC相交就势在必行了. (2)在三角形中,若有角平分线可构造全等三角形,有一边上的中点,过这点可作平行线. (3)AEC与MEC只能证全等后才能得到AE=EM,在此没有定理可用.第三阶梯例1已知:如图以梯形ABCD的对角线AC及腰AD为邻边作ACED,DC的延长线交BE于F.求证:EF=BF.提示: (1)梯形的上下两底具有什么性质?平行四边形的对角线有什么性质? (2)如何添加辅助线,再结合条件平行四边形,得到某条线段的中点呢 (3)此题有几种构造三角形中点的方法?构造梯形可以吗?请试一试.参考答案: 证明:连结AE交DC于O 四边形ACED是平行四边形 O是AE的中点(平行四边形对角线互相平分). 梯形ABCD DCAB 在EAB中,OFAB 又O是AE的中点. F是EB的中点 EF=BF.说明: (1)证题时,当一个条件有几个结论时要选择与其有关联的结论. (2)此题可延长EC,在梯形ABCD内构造平行四边形或以AB、BE、AD的延长线为边构造梯形也可以得证. 例2梯形ABCD中,ADBC,DCBC,B=60,AB=BC,E为AB的中点.求证:ECD为等边三角形.提示: (1) 由条件可知,CE是哪个特殊三角形的什么线段?为什么?2的度数是多少? (2) 在梯形ABCD中,有AB边的中点E,如何添加辅线后,得到ED=EC?为什么? (3) 此题不用平行线等分线段定理,还有别的方法吗?试一试.参考答案:证明:连结AC,过点E作EFAD交DE于F. 梯形ABCD ADBC ADEFBC. 又E是AB的中点, F是DC的中点 (经过梯形一腰的中点与底平行的直线平分另一腰) DCBC EFDC ED=EC (线段垂直平分线上的点和线段两端点的距离相等) EDC为等腰三角形. AB=BC B=60 ABC是等边三角形 ACB=60 又E是AB边中点 CE平分ACB 1=2=30 DEF=30 DEC=60 又ED=EC DEC为等边三角形.说
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2023-2024学年四川省凉山州安宁联盟高二下学期期末联考数学试题(解析版)
- 2023-2024学年山东省淄博市高二下学期期末考试数学试题(解析版)
- 2023-2024学年广东省东莞市高二下学期7月期末教学质量检查数学试题(解析版)
- 浩如宇装饰新材料有限公司年产5000立方米科技木技术改造项目环评资料环境影响
- 2025年秋三年级上册语文同步教案 22 读不完的大书
- 小学地震演练活动方案
- 给爱人的检讨书
- 人造板产品质量省监督抽查实施细则
- 佛山生产安全管理制度
- 风湿性疾病课件
- 年产1000吨聚丙烯酸钠车间工艺设计
- 老年患者他汀的应用课件
- 精品解析浙江省温州市苍南县2021年小学科学六年级毕业考试试卷
- GB∕T 24508-2020 木塑地板-行业标准
- GB∕T 40278-2021 纸和纸板 加速老化(光照条件下)
- 可控震源日常维护及安全操作规程
- 校园环境卫生管理制度
- 建设工程项目监理人员变更申请表
- 房产证英文翻译件模板
- 板形与板形控制基础知识
- 热血传奇架设及参数设置修改
评论
0/150
提交评论