设计说明书.doc

YD5141SYZ后压缩式垃圾车的上装箱体设计(优秀版)(全套含CAD图纸)

收藏

资源目录
跳过导航链接。
YD5141SYZ后压缩式垃圾车的上装箱体设计(优秀版)(全套含CAD图纸).zip
设计说明书.doc---(点击预览)
设计任务书.doc---(点击预览)
文献综述.doc---(点击预览)
实习报告.doc---(点击预览)
YD5141SYZ后压缩式垃圾车的上装箱体设计(优秀版).doc---(点击预览)
CAXA图纸
制动分泵护罩.exb
制动分泵活塞推力块.exb
制动分泵皮碗.exb
制动分泵缸.exb
制动器底板.exb
制动器底板加固板.exb
制动器装配图.exb
制动摩擦片.exb
制动泵活塞.exb
制动蹄.exb
制动蹄导夹.exb
制动蹄带摩擦片总成.exb
制动蹄支銷偏心.exb
制动蹄支销.exb
制动蹄调整偏心.exb
制动蹄调整偏心螺栓.exb
底盘总体布置图.exb
外文翻译
制动分泵护罩.dwg
制动分泵活塞推力块.dwg
制动分泵皮碗.dwg
制动分泵缸.dwg
制动器底板.dwg
制动器底板加固板.dwg
制动器装配图.dwg
制动摩擦片.dwg
制动泵活塞.dwg
制动蹄.dwg
制动蹄导夹.dwg
制动蹄带摩擦片总成.dwg
制动蹄支銷偏心.dwg
制动蹄支销.dwg
制动蹄调整偏心.dwg
制动蹄调整偏心螺栓.dwg
底盘总体布置图.dwg
压缩包内文档预览:(预览前20页/共27页)
预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图
编号:1475004    类型:共享资源    大小:3.86MB    格式:ZIP    上传时间:2017-07-25 上传人:机****料 IP属地:河南
50
积分
关 键 词:
yd5141syz 压缩 紧缩 垃圾车 上装 箱体 设计 优秀 优良 全套 cad 图纸
资源描述:


内容简介:
5 (1995) 408of of an 0 994 he of a of a in An of in a at as as -D is to of of An of a a in to to an by of by 1. in A of to of to 1, 5- of 963, in of in to a to if is to be to in if is to In to of is to to be by or is to an of * 09246/$ 1996 9245)02038by of in it be In an in a a in is to of a in a of a to an -D to 2. he a of a is a as 1. is to in a in a to at of as 2. of is to of as by -B 3, 5 (1995) 408 416 409 ) 1. A 2. A at 3. of in in is to of to a is so be in of of to a as 3. As in of is in to To no on to a at as 2. of of to to of to at of of to be in is of of in to is to to To of to a is of at of to of is to a by a in of 3. of he of is to in in of is by is of is of by 6. To of on by 410 5 (1995) 4080 4. in to to an of of by on a of as do in of in by of be of of By on of of a be In a .7 mm DQ as 4. by is by 5. of a is on or to to In 0%, as by 5, is as is is is In in of a in to a to be if it is to of To of a a in on as by by an To a of to in a on to as 2. of as 6, on as 7. As be in or to 55 (1995) 40811 90 85 80 75 70 65 55 # 50 45 _ 40 0 35 0 3r 30 25 fe 0 15 10 5 5 10 15 20 25 30 35 40 %) 5. .7 DQ 90 85 80 75 70 65 6o 55 _ 5O -,- 45 40 . 35 30 25 20 15 10 5 J 5 0 J I I ! I I 5 10 15 20 25 30 35 40 %) 7. 6. on is to It is to to on is of is LD is is of of in As in of is to o of of a 3-D of is of -D to -D is to In to of a AD to as by AD as 8. In it if to a -D as AD in to as to 12 5 (1995) 4088. of In a is to is 8. As in is in is of in as 9,910; 5,499; 4,411; 4,891; 24,711. as in 57 10 m/s; 895 of PU on to a is 1 100 s, on GI of of is of be is in is to it be to if In of is to of is to is 9. As in is As 10, of It be is at to in In of as 11, is in as 7. is by 5 (1995) 40813 9. be of to is in 4. A is to of is to at of as 12, to of as in 12. In to a 3-D of as of as 12. of of 1 = 52i = = 6227 82 102 103 10. 414 5 (1995) 408O 6o ,- 40 o 20 I I I I I I I 10 0 0 30 %) 11. 80 6o 40 20 | 4 I I | i | 20 10 20 30 %) 13. :/I/ /h.:.:. !/ I/l/ll . , : 12. 14. is 13. As in to a of a is in 14 in in be in As a to -D of J, 5 (1995) 408 416 415 5. s in to is to to to be In by a to In to an as 15. of by a up to of to of at as At of to a in to it conta M. A. A. . he a in to an of s of in As in of on . as in in a in 960s 35611, a of to a It be a of a of At to on it is in 9, of in of A on in 8, as It is is in as s is to By a to be to to In a a is to , is is to in 2. he is by a of 4, As 1, in a of a by of of of in of to +=+=+= )(+=+ ) .r is p of r be in of =+=) (3) is at be of of of by 7. of a 10. a of )()(_=+=(4) is is as (_+= (5) 3. a a on of to A a a so be to a of is or s a on 3 is to to or 12 to or it is on By a on x a of is 2 s A of to at is )(/ += (6) is is x P of to to is of P. is at at s 6, s be by of to += )11()()(7) It a of a 1( +to a 1( +to a s s it on by on to 1, be as a a to is in a of to at is in to be a). a be As we of of is by an is b). of of of is LP y x b) (a) . a of be as It is is at v, r p by to of v r of is by it of is be by on is is . be to of of a be in a). It is to s an is is in By a in be b). of is to It of to be )1()11()()(+=(7) 4 ra b)(a) (a) (b) 5 of is is of s in a of By at of be 5. at a is a to It be of s a SO 0km/h, s is by of to be by of P,by s of of As a), to 5m in to a 0m, to in 5m to to 5m. of is a a to W of a (b), in of c). is 2. It by of (a)b) (c) = 80km/h (G = = 1s) ow in of a 300a 00km/h. is in 2, a to of is up to a at 8km/h. is in is s. s (b), is up to s (a). as by c). is a of a in _ _ is to in as in of (a) (b) (c) . on in in of a in at of of of of on in 1 871086 2 3 ., A of 1978, 20(6), 4 1994 5 . et s t, 80104, 1968 6 19(4), 1977, 7 ., 991), 8 . ., 35(2001), 9 1999, 10 . ., A 33(2000), 11 of 38B, 1963 12 1970, m=830 of z=1210 of x=290 of 84 kg m h=0.4 m =m a=m b=m m t=m 9860 Nm/9260 Nm/000 汽车 司机系统的研究处理 M. A. A. . 梦华 译 摘要 : 汽车 驾驶系统为 汽车设计处理分析 提供了坚实的基础。这份文件旨在对有关汽车与司机互动中的司机操作和速度 控制 提供指导。通常的汽车 驾驶 数学模型通过数字化的模拟演习来落实,并处 理 那些理典型特征。 随着当今汽车底盘广泛采用了信息技术和电子系统 .。人的因素已构成对车辆的模拟研究处理的新问题 。 这里所推荐的模型为研究有积极影响干预的底盘系统的汽车 驾驶 系统提供了工具。 关键词 : 司机 车动态、 驾驶员的行为 、 底盘提高系统 1 引言 近来,由于在车辆发展中越来越多地采用虚拟原型车,汽车在虚拟环境中设计处理也广泛应用于学术研究与制造两个领域。为了处理模拟汽车,开发者需要汽车动态模拟模型 (自从 20世纪 60年代 以来, 汽车动态 模型的各种应用已经得到了开发 , 包括动态分析、交互式模拟驾驶、车辆检验等复杂的模型,按规定的程序解决特定 问题 。从整个动态模拟的过程中可以看出,车辆和司机是一个紧密结合的人工机械系统,汽车和司机的相互作用行为起着至关重要的作用。同时,出于人工机动性的考虑,汽车底盘提高系统 被引入车辆,目标是把环境对安全、稳定、舒适的影响减至最低,不过,有人认为,在某些情况下,这些提高底盘系统是弊多于利的。在 9电子增强系统的上下文中明确的指出 , 评估 汽车 驾驶 系统的质量包括不同的质量问题和设计矛盾。这牵涉到司机的行车速度控制及其定向 /督导管理,直到最近才获得重视。由 8提供的对重型 汽车底盘加强的 详细审查制度, 包括诸如刹车防抱死系统 (牵引控制系统 (后桥督导制度和动态稳定控制系统 。 因此建议把司机考虑到控制系统中。因为司机是组成系统必需 的。为了使汽车易于控制 , 可鼓励司机驾驶接近到汽车的极限, 因此影响了原定的安全性。 在以下的部分中将介绍一种基本的 4向,横向,侧倾,旋转)汽车模型和驾驶控制模型。驾驶模型可以控制汽车前横摆角的特定结构,并且经验性的感觉纵向加速误差。在第 4部分,将评论汽车 驾驶 交互作用。这个仿真系统将在第 5部分中用来分析包括在狭窄道路上的变向和在转弯时的刹车制动操作。 2 车辆模型 汽车模型用一个 4自由度的模型来描述 4:纵向,横向,侧向,旋转运动。如图1所示,虽然悬架没有包含在这个模型里,但模型中采用了简化的 描述,把车身旋转假设成一个旋转轴, 该 轴固定在车身前后 轮轴的旋转中心的顶点 。模型参数在附录中有说明。 1 图 1 汽车模型 汽车车轴参数分别表示横向垂直受力, 分别表示滚动率和侧倾角。前后轮的侧偏角和车轮外倾角 和 可被定义为汽车运动变量术语。 当汽车匀速行驶时纵向运动可以从运动方程式中消去。 2 非线性汽车模型的动力学包括非线性轮胎特性,这将在 7“不可思议的规则”中模 拟到。横向和纵向的传输负荷的影响通过特定 近似值来估算 10。假设一个固定的滚动轴位置,前后轮的横向路面 传输负荷表达式为: 横向路面 传输负荷在各种汽车前进速率计算时,用下式估算: 3 通过道路驾驶行为预览 显然,只有汽车本身不可能维持想得到的路径。这就需要结合司机驾驶模型。司机对进行中的操纵控制行为有视觉的和动作的反馈。通过道路驾驶行为,可以预览包含了建立在对命令理解感知基础上的行为。对于方向的操纵控制,司机可以用 预演行为在弯路上行驶,汽车将在给出的转向角下通过弯路。因此司机可以根据水平道路曲率给出 适当的转向角,剩余的路线转移可以通过 补偿性的控制行为处理。对于速度控制,虽然恰当的感觉路面等级比理解水平曲面图表困难的多且不够精确,司机还是可以设法根据路况调整节气门开度角等级。 向的操纵控制 对于驾驶者的视觉反馈,这里给出基于 3的计划策略下建立的双标准(预见性和补偿性)驾驶操作系统模型。司机通过预先的调节尽力控制驾驶去适应路线位置,操纵汽车在弯路上的行驶,改变路线或绕开障碍物。对于不可预见的路面干扰,司机必须用补偿性的操作抵消这些干扰,在路线中随机的操纵汽车。 对于预见性控制, 韦尔和马克瑞尔 12提出的控制前侧偏角和侧向位置或 航向角和侧向位置的系统结构提供了闭合回路特性。因此,这里假定司机通过对前横摆和路线位置误差的感觉逐步进行修正操作。在系统中通过一个预先的行为在汽车固定轴 点。表 2图解了通过路线事先查看的驾驶行为。下面给出一个相对于预置点想得到的路线的综合项误差: 3 和 是在 别代替车头方位和路线位置误差百分比。驾驶者仅仅需要感觉预设点沿着路线的角误差 。这里的预设距离 速度和预演时间 是符合我们的日常生活经验的 ,车速越慢 ,司机看的在距离越近,车速越高 ,看到的距离越远。 在马克瑞尔 的跨越式模型中,司机的补偿反馈控制被确定为综合的角度误差调整功能。 它包括三部分:增加量 合项误差的补偿量 ,引导术语 抵消司机感知汽车轮胎延时,滞后术语 相当于神经延误,时间延误近似司机反应时间的延迟。 图 2 示范道路驾驶通过预演 对司机的运动反馈,根据人体器官执行的动作和重力作用的方位提供的信息,在1中,艾伦 注释到横摆率可以设置为运动反馈原理。运动反馈 提供了司机补偿汽车横摆率迟滞的引导。 度控制 各种情况下的速度控制都很重要,包括在安全方面的弯路上行驶的加速级别,对速度极限的反应和避开紧急情况的急刹车。在直线运行时司机保持指定的速度,当司机发现有弧度 ,速度则相对减少 ,以维持理想的横向加速。司机速度控制的定则可以用图表 3( a)描述。司机发出符合理想变速的减速命令,并感觉减速误差。尤其当电子控制底盘,像刹车防抱死系统 (牵引控制系统 (等被使用后,速度控制更 4 必不可少。从这些控制系统的工作原理我们可以看到 , 大部分都是在紧急情况下启动,因此速度控制是不可逃避的。举例来说 ,通过加入有效的 动踏板力和汽车减速之间的关系如图 3( b)所示,由上述的使用关系和速度控制规律,这样的电子控制评价效果还是可行的。 图 3 (b)驾驶速度控制规律 ( a) 统特性 4 汽 车 驾驶 互动 有速度控制的汽车 控制动力学 鉴于上汽车和司机的述动态特征,可以给出一 个没有速度控制的汽车 控制模型方框图如图表 4所示。假定车辆以不变的速度前进。汽车的横向速度 v,侧倾率 r,横摆率 车的横向速度 ,侧倾率是在司机直接控制下的,虽然横向运动没有由司机直接控制,它仍然影响到司机的行为,尤其当汽车前进变量描述被引进时。动力学方程式中,可以由汽车的横向速度与侧倾率提供汽车的方向角和横向路径位置。最后将由司机根据复合项误差做出纠正性操作。作为封闭性的分析,有两个输入系统 ,一个是路径命令 ,一个是最初的汽车方向角 。汽车将被按照路径命令操作, 帮助补充矫正视 觉误差。然而,随着交互式方程式的应用,在模拟中会发现侧向偏差(表 5( a),可以假设司机继续操纵直到汽车的形式姿态与沿着路径的预设点相符合。这种方法最终消除了汽车行驶姿态的误差,但是不能纠正路径位置误差。通过在系统中加入一个并行的积分器,可以消除这个补偿误差(表 5( b)。这个积分器的功能是补偿综合项误差,这个误差包括车头方位误差和路径位置误差 5 (表 4)。它对路径位置比只有积分器更快的产生补偿。转向角误差转换综合项误差的机能可以用下式定义: 驶员 当速度控制被关注的时候,司机 汽车相互作用是驾驶员横向和纵向操纵的结果,这在更高的层面反映了司机的控制作用。表 6图解了相互作用的结构。表 6的上部分描述了司机方向控制行为,下部分描述了速度控制行为。通过观察道路车辆的反应和反馈信息 ,,他们之间的关系就可以处理了。 图 4 车辆定向控制系统模型 ( a) 没有积分 器 ( b)有积分器 图 5 平行合成效果 6 表 6 汽车 驾驶 互动控制 5 绩效分析 双车道车速改变 没有速度控制的车辆控制模式同样适用于这里的双车道操作,附录指出了车辆的参数。表 7显示系统的反应。可以看出,道路信息输入使得汽车的执行分析是可能的。可以看出 ,道路信息的加入使得汽车性能分析更合理。司机沿着 0km/此司机的操作输入是由理想的运动路径决定的,该路径通过预设距离 接器 的预设点。同时也取决于司机对汽车的反应习惯。如图表 7所示,这个操纵要求汽车在最初的车道上行驶 15米,然后在 30 米内侧向转位 持这一路径 25米,又在接下来的 25米内回到最初的路线。司机要在没有触及胶线划定的情况下顺利完成所需的操作。轻微的 延误和超前不会引起不稳定。其他结果显示双车道变换回应的 系统反应了 方向盘转角(图7( b),它造成约 7(c))。这超出了一般驱动器要求。选择 2可以防止轮胎的峰值接近饱和,它具有模型的自然频率和阻尼特性。 7 图 7 双车道短暂反应变化 速度不变 V=80km/h 驾驶参数: (G = = = 1s) 弯道刹车情况 现在考虑综合操作和反制动操作下的 汽车 驾驶 模型的速度控制。图 8说明了模型的反馈特性。司机进入一个半径 300米的弯道,由于比预期的要急,导致过度横向操纵加速 ,在图 8中大约为 计 2,谨慎的司机在驾驶时会适当的减速,因此 会减至 应的速度减到 88km/度控制规则以前在 指定了制动减速为 注意的是 ,如果横向加速超过 图 .8(b),驾驶模型开始制动,随后带来了 图 8 (a)。这已 经从实际的制动过程轨迹得到证实 (图 )。这是由于后桥转弯的迟滞导致的。在汽车表现出平稳的横向加速状态并达到预期的速度后,如果转向条件还是不足,司机可以降低车速 ,使车辆控制在稳定的状态。 8 图 8 车辆的转弯刹车反应 6 结论和进一步研究 理想的司机操纵驾驶和速度控制模型应该指定汽车的侧向位置和轻度减速控制的姿态。 这份分析已经证明了该模拟系统的控制稳定性。稳定的掌舵控制已经通过速度变化补偿模式实现。 该文件提出的模式旨在评估影响电子底盘提高系统。它为探索现行的底盘系统的效果提供了工具。 购买后包含有 纸和说明书 ,咨询 Q 197216396 1摘要 : 随着城市建设规模的不断扩大和人们生活水平的不断提高 ,生活垃圾的运输与处理已成为人们不可忽视的卫生问题。高效的垃圾压缩运输是一种很好的解决方式,后压缩式垃圾车便是其中的一种常见结构形式。 本次设计课题来源于江苏悦达专用车有限公司,主要根据总体结构设计的要求对垃圾车车厢和排出机构液压系统进行了设计。车厢是垃圾车的重要部件之一,主要起装载、运输垃圾之用。运输过程中,不良机构容易造成二次污染。根据设计要求,确定了厢体形状和主要尺寸参数,重点考虑它的密封性;排出 机构主要是用来排卸垃圾以及在垃圾装载时提供一定的背压力,使 压缩后的垃圾密度均匀;在设计过程中,首先计算液压缸的外部载荷,然后根据结果计算出液压缸的主要参数,进而一步步确定液压系统中其他元件的参数。 通过设计,新型后压缩式垃圾车降低了工人劳动强度,有效地解决了垃圾运输过程中 飘、洒、漏等问题 ,提高了运输效率,降低了运输成本,达到了环保需求,满足了设计要求。 关键词: 垃圾车;改装车;上装;压缩式; 买后包含有 纸和说明书 ,咨询 Q 197216396 2F N F of of s to it t be of is a of is a is o.,to it is at is of In is to in to s is to In is of of as in of of 买后包含有 纸和说明书 ,咨询 Q 197216396 3购买后包含有 纸和说明书 ,咨询 Q 197216396 4购买后包含有 纸和说明书 ,咨询 Q 197216396 5购买后包含有 纸和说明书 ,咨询 Q 197216396 6购买后包含有 纸和说明书 ,咨询 Q 197216396 7购买后包含有 纸和说明书 ,咨询 Q 197216396 8购买后包含有 纸和说明书 ,咨询 Q 197216396 9购买后包含有 纸和说明书 ,咨询 Q 197216396 10 购买后包含有 纸和说明书 ,咨询 Q 197216396 11 购买后包含有 纸和说明书 ,咨询 Q 197216396 12 前 言 以在近期或未来作为农村的主要货运工具附带作为载人工具。 本课题来源于生产实践和对农村实际状况 的考察。依据农民的经济能力和农村交通的状况,提供一个合理的设计方案。 汽车的总体设计是汽车设计工作中最重要的一环,他对汽车的设计质量、使用性能和在市场上的竞争力有着决定性的影响 . 按照目前的汽车行业状况,参考过现今市场上成熟的一些货车,我们设计载重量为 低速货车,并且力争达到以下的设计效果: 1. 工作可靠,结构简单,装卸方便,便于维修、调整 2. 尽量使用通用件,以便降低制造成本 3. 在保证功能和强度的要求下,尽量减小整备质量 汽车制动系是用以强制行驶中的汽车减速或停车、使下坡行驶的汽车的车速保 持稳定以及使已停驶的汽车在原地(包括在斜坡上)驻留不动的机构。随着汽车速度的提高及车流密度的日益增大,为了保证行车安全,汽车制动工作的可靠性显得日益重要。根据这次设计的需要和制动器在货车上的应用状况,选择摩擦式制动器中的领从蹄式作为制动装置。 随着政府对农民收入在政策上的支持,农民的收入得到很大改善。同时国家也加强了农村道路的建设力度,在未来的几年内农村的交通状况将会的到比较大的改观。相信这种有针对性的低速货车会受到农民朋友的青睐。 购买后包含有 纸和说明书 ,咨询 Q 197216396 13 第 1 章 汽车总体设计 体方案分析 车的分类 汽车有很多分类方法,可以按照发动机排量、乘客座位数、汽车总质量、汽车总长、车身或驾驶室的特点等来分类,也可以取上述特性中的两个指标作为分类的依据。 国标 2001将汽车分为乘用车和商用车。乘用车是指在设计和技术特性上主要用于载运乘客及随身行李和临时物品的汽车,包括驾驶员座位在内最多不超过 9个座位。 商用车时指在设计和技术特性上用于运送人员和货物的汽车,并且可以牵引挂车。商用车又有客车、半牵引车、货车之分。 货车按照汽车最大总质量的分类如下: 表 1车按照装载质量分类 本次设计的汽车属于轻型载货汽车。 车形式的选择 不同形式的汽车,主要体现在轴数、驱动形式以及布置形式上有区别。 数 汽车可以有两轴、三轴、四轴甚至更多的轴数。影响轴数的主要因素有汽车的总质量、道路法规对轴载质量的限制和轮胎的负荷能力以及汽车的机构等。随着设计汽车的乘员增多或装载质量增加,汽车的整备质量和总质量也增大。在汽车轴数不变的情况下,汽车总质量增加以后,使公 路承受的负荷增加。当这种负荷超过了公路设计的承载能力以后,公路会被破坏,使用寿命也将缩短。为了保护公路,有关部门制定了道路法规,对汽车的轴载质量加以限制。 汽车总质量小于 19t 的公路运输车辆均采用结构简单、制造较成本低廉的两轴方载货汽车类型 轻 型 微 型 重 型 6 型 厂定最大总质量 14 购买后包含有 纸和说明书 ,咨询 Q 197216396 14 案。 动形式 汽车的驱动形式有 4 2、 4 4、 6 2、 6 4、 6 6、 8 4、 8 8 等,其中前一位数字表示汽车车轮总数,后一位数字表示驱动轮数。增加驱动轮数能够提高汽车的通过能力,驱动轮数越多,汽车的机构越复杂,整备质量和制造成本也随之增加,同时也使汽车的总体布置工作变的困难。 总质量小的商用车,多采用机构简单、制造成本低的 42驱动形式。 置形式 汽车的布置形式是指发动机、驱动桥和车身(或驾驶室)的相互关系和布置特点而言。汽车的使用性能除 取决于整车和各总成的有关参数以外,其布置形式对使用性能也有重要影响。货车的布置形式可以按照驾驶室与发动机相对位置的不同,可以分为平头式、短头式、长头式和偏置式四种。货车又可以根据发动机位置不同,分为发动机前置、中置和后置三种布置形式。 A. 平头式、短头式、长头式、偏置式货车 货车的发动机位于驾驶室内时,称为平头式货车。这种形式的货车布置特点是发动机在驾驶员和副驾驶员座位中间 ,因此驾驶室的前端不需要凸出去,没有独立的发动机舱。 发动机的大部分在驾驶室的前部,少部分位于驾驶 室内的货车,称为短头式货车。这种货车车身部分的结构特点是:因发动机大部凸出在驾驶室前部,所以发动机有独立的发动机舱和单独的罩盖,发动机舱和驾驶室共同形成货车的车头部分。 货车的发动机位于驾驶室前部称为长头式货车。这种形式的货车车身部分的结构特点与短头式货车相同,只是发动机舱和车头部分更长些。 具有平头车的一些优点,如轴距短、视野良好等,此外还具有驾驶室通风条件好、维修方便等优点。 短头式货车的主要特点有:汽车的总长和轴距得到了缩短,最小转弯 直径小,机动性能好于长头式,不如平头式货车;驾驶员的视野得到改善;动力总成操纵机构简单;发动机的工作对驾驶员的影响得到很大改善;位于驾驶室内的发动机后部接近性不好,导致驾驶室内部空间拥挤,布置踏板困难;汽车正面与其他物体发生碰撞时,驾驶员和前排乘员的伤害程度比平头式货车要轻的多。 长头式货车的主要特点有:发动机及其附件的接近性好,便于检修工作;满载时前轴负荷小;地板低,驾驶员上、下车方便;离合器、变速器等操纵机构简单,易于布置;发动机工作对驾驶员的影响很小;驾驶员和前排乘员安全性好。 购买后包含有 纸和说明书 ,咨询 Q 197216396 15 但是总长与轴距均较长, 最小转弯直径较大,机动性能不好;驾驶员的视野不好。 平头式货车相对于以上两种车型,发动机可以布置在座椅下后部,此时中间座椅处没有很高的凸起,可以布置三人座椅,故得到广泛应用。 平头货车的主要缺点有:空载时前轴负荷大,因而在坏路上的通过性变坏;因为驾驶室有翻转机构和锁止机构,使结构复杂;进出驾驶室不如长头式货车方便;离合器、变速器等操纵机构复杂;发动机的工作噪声、气味、热量和振动对驾驶员等均有较大影响;汽车正面与其他物体发生碰撞时,易使驾驶员和前排乘员受到伤害。 平头式货车的主要优点如下:汽车总长和轴 距尺寸短,最小转弯直径小,机动性能好,不需要发动机罩和翼子板,加上总长缩短等因素的影响,汽车的整备质量减小;驾驶员的视野得到明显改善;采用翻转式驾驶室时能改善发动机及其附件的接近性;汽车货箱与整车的俯视面积之比称为面积利用率,平头车的该指标比较高。 因此,对于要求结构简单的低速货车来说,采用平头式比较合适。 置、后置 主要优点:可以采用直列、 现故障容易;发动机的接近性良好,维修方便;离合器、变速器等操纵机构结构简单,容易布置;货箱地板高度低。 主要缺点是 :如果采用平头式驾驶室,而且将发动机布置在前轴之上,处于驾驶员、副驾驶员座位之间时,驾驶室内部拥挤,隔绝发动机的工作噪声、气味、热量和振动的工作困难,离合器、变速器等机构复杂;如采用长头式驾驶室,在增加整车长度的同时,为保证驾驶员有良好的视野,需将座椅布置的高些,这又会增加整车和整车质心高度等问题。 发动机中置后桥驱动货车,可以采用水平对置式发动机布置在货箱下方,因而发动机通用性不好,需特殊设计,故维修不便;离合器、变速器等机构复杂;因发动机距离地面近,容易被车轮带起的泥 土弄脏;受发动机位置影响。货箱地板高度高。因为这种布置形式的缺点多,并且难以克服,故不采用。 这种布置形式的货车是在发动机后置后桥驱动的乘用车地底盘基础上变形而来的,所以一般不采用。它的主要缺点是离合器、变速箱等操纵机构结构复杂;发现发动机故障和维修发动机都困难以及发动机容易被泥土弄脏;后桥容易超载等。 车主要尺寸的确定 汽车的主要尺寸参数有外廓尺寸、轴距、轮距、前悬、后悬等。 廓尺寸 购买后包含有 纸和说明书 ,咨询 Q 197216396 16 汽车的长、宽、高称为汽车外廓尺寸,受有关法规限制不能随意确定,货车还要受装 载质量的影响。汽车尺寸小些不仅可以行使期间需要占用的道路长度小,同时还可以增加车流密度,在停车时占用的停车场面积也小。除此之外,汽车的整备质量相应减少,这对提高比功率、比转矩和燃油经济性有利。每个国家对公路运输车辆的外廓尺寸均有法规限制。这是为了使汽车的外廓尺寸适合本国的公路桥梁、涵洞和铁路运输的标准及保证行驶的安全性。我国对公路车辆的极限尺寸规定如下: 表 1车及挂车外廓尺寸的最大限值 单位为毫米 车辆类型 车长 车宽 车高 汽车 三轮汽车 4600 1600 2000 货车及 半挂牵引车 最高设计车速小于 70km/6000 2000 2500 二轴 最大设计总质量 35006000 2500 4000 最大设计总质量 3500 且 80007000 最大设计总质量 8000且 120008000 最大设计总质量 12000000 三轴 最大设计总质量 2000011000 限定的汽车外廓尺寸如上表所示, 后视镜等 单侧外伸量不得超出最大宽度处 250窗、换气装置开启时不得超出车高 300 距 L 轴距 L 对整备质量、汽车总长、汽车最小转弯直径、传动轴长度、纵向通过半径等有影响。当轴距短时,上述各指标减小。此外,轴距还对轴荷分配、传动轴夹角有影响。轴距过短会使车厢长度不足或后悬过长;汽车上坡时制动或加速时轴荷转移过大,使汽车制动性或操纵稳定性变坏;车身纵向角震动增大,对平顺行不利;万向节传动轴的夹角增大。 原则上对发动机排量大的乘用车 、载质量或载客量多的货车或客车轴距取得长。对机动性要求高的汽车,轴 距应取的短些。为满足市场需要,工厂在标准轴距货车的基础上,生产出短轴距和长轴距的变型车。对于不同轴距变型的轴距的变化, 轮距 1B 和后轮距 2B 改变汽车轮距 B 会影响车厢或驾驶室内宽度、汽车总宽、总质量、侧倾刚度、最购买后包含有 纸和说明书 ,咨询 Q 197216396 17 小转弯直径等因素发生变化 并有利于增加侧倾刚度 ,汽车横向稳定性好 ;但是汽车的总宽和总质量及最小转弯直径等增加 ,并导致汽车的比功率、比转距 指标下降 ,机动性变坏。 表 1类汽车的轴距和轮距 车型 类别 轴距 L 轮距 B 车 微型 轻型 中型 重型 1700 2900 2300 3600 3600 5500 4500 5600 1150 1350 1300 1650 1700 2000 1840 2000 悬 后悬 前悬( L F ):前悬是指汽车最前端(除灯罩、后视镜等非刚性固定部分外)至前轴中心之间的水平距离。前悬的长度应足以固定和安装驾驶室前支点。发动机、水箱、转向机、弹簧前托架和保险杠等零件和部件。前悬不宜过长,否则,汽车的接近角过小。前悬尺寸对汽车通过性、碰撞安全性、驾驶员视野、前钢板长度、上车和下车的方便性以及汽车造型等均有影响。增加前悬尺寸,减小了汽车的接近角,使通过性降低,并使驾驶员视野变坏。应在前悬这段尺寸内要布置保险杠、散热器风扇、发动机、转向器等部件,故前悬不能缩短 。长些的前悬这段尺寸有利于在撞车时对成员起保护作用,也有利于采用长些的钢板弹簧。对平头车汽车,前悬还会影响从前门上、下车的方便性。初选的前悬尺寸,应当在保证能布置下各总成、部件的同时尽可能小些。对载客量少些的平头车,考虑到正面碰撞能有足够的结构件吸收碰撞能量,保护前排乘员的安全,这又要求前悬有一定的尺寸。长头货车前悬一般在 110 1300 范围内。 后悬( L R ):是指汽车最后端(除灯罩等非刚性固定部分外)至后桥中心之间的水平距离,后悬的长度主要决定于货厢长度、轴距和轴荷分配情况,同时要保证适当的离去角 。 后悬尺寸对汽车通过性、汽车追尾时的安全性、货箱长度、汽车造型等有影响,并取决于轴距和轴荷分配的要求。后悬长,则汽车离去角减小,使通过性降低;而后悬短的货车就可能使货箱长度不够。总质量在 2200之间,特长货箱的汽车后悬可达到 2600不得超过轴距的 55。 车车头长度 购买后包含有 纸和说明书 ,咨询 Q 197216396 18 货车车头长度系指从汽车的前保险杠到驾驶室后围的距离。车身形式,即长头型还是平头型对车头长度有绝对影响。此外,车头长度对汽车外观效果、驾驶室居住性、汽车面积利用率和发动机的接近性 等有影响。 平头车一般在 1400 1500之间。 车车箱尺寸 要求车箱尺寸在运送散装煤和袋装粮食时能装足额定的吨数。车厢边板高度对汽车质心高度和装卸货物的方便性有影响,一般应在 450 650箱宽应在汽车外宽符合国家标准的前提下适当宽些,以利于缩短边板高度和车箱长度。 车质量参数的确定 汽车质量参数包括整车整备质量、装载质量、质量系数、汽车总质量、轴荷分配等。 车整备质量 汽车的整备质量:亦即我们以前惯称的“空车重量”。所谓汽车的整备质量是指汽车按出厂 技术条件装备完整(如备胎、工具等安装齐备),各种油水添满后的重量,但没有载货和载人时的整车质量。这是汽车的一个重要设计指标。该指标既要先进又要切实可行。它与汽车的设计水平、制造水平以及工业化水平密切相关。同等车型条件下,谁的设计方法优化,生产水平优越,工业化水平高,则整备质量就会下降。 整车整备质量对汽车制造成本和燃油积极性有影响。目前,尽可能减少整车整备质量的目的是:通过减少整备质量增加载质量或载客量,抵消因满足安全标准、排气净化标准和噪声标准所带来的整备质量的增加,节约燃料。减少整车整备质量的主要措施有 :新设计的车型应使其结构更合理,采用强度足够的轻质材料,如塑料、铝合金等等。过去用金属材料制作的仪表板、油箱等大型结构件,用塑料取代后减重效果十分明显,目前得到广泛应用。 整车整备质量在设计阶段需要估算确定。在日常工作中,收集大量同类型汽车的有关质量数据,结合新车设计的特点、工艺水平等初步估计整备质量。 车的装载质量 汽车的装载质量车在碎石路面上行驶时,装载质量约 为好路面的 75% 85%。这次设计确定的 量系数 质量系数 0m 是指汽车装载质量与整备质量的比值,即 0m = 0m (1购买后包含有 纸和说明书 ,咨询 Q 197216396 19 该系数反映了汽车的设计水平和工艺水平, 0m 越大,说明该汽车的结构和制造工艺越先进。在参考同类型汽车选定 0m 后(表 1,可根据给定的 表 1车的质量系数 0m 这次确定的为 则;整车整备质量0m0m 车总质量 汽车总质量按规定载满客、货时的整车质量。 汽车总质量的确定: 轿车:汽车总质量 = 整备质量 + 驾驶员及乘员质量 + 行李质量 客车:汽车总质量 = 整备质量 + 驾驶员及乘员质量 + 行李质量 + 附件质量 货车:汽车总质量 = 整备质量 + 驾驶员及助手质量 + 行李质量 则货车的总质量载质量 mn 65中, 1n 为包括驾驶员以及随行人员数在内的人数,应等于座位数。 65终确定的总之量为 荷分配 汽车的轴荷分配是指汽车载空载或满载静止的情况下,各车轴对支乘平面的垂直负荷,也可以用空载或满载总质量的百分比来表示。 汽车的轴荷分配是汽车的重要质量参数,它对汽车的牵引性、通过性、制动性、操纵性和稳定性等主要使用性能以及轮胎的使用寿命都有很大的影响。因此,在总体设计时应根据汽车的布置型式、使用条件及性能要求合理地选定其轴荷分配。 对轮胎寿 命和汽车的许多使用性能的影响来说,从各车轮轮胎磨损均匀和寿命相近考虑,各个车轮的负荷相差应不大;为了保证汽车有良好的动力性和通过性,驱动桥应有足够大的负荷,从动轴上的负荷也适当减参数 车型 总质量 t 0m 货车 买后包含有 纸和说明书 ,咨询 Q 197216396 20 小,以利减小从动轮滚动阻力和提高在环路面上的通过性;为了保证汽车由良好的操纵稳定性,又要求转向轴的负荷不应过小。 在确定汽车的轴荷分配时,还要考虑汽车的静态方向稳定性和动态方向稳定性。根据理论分析,汽车质心位置到汽车中性转向点的距离 因此,可以得出作为很重要的轴荷参数,各使用性能对其要求相互矛盾, 这就要求设计时根据对整车的性能要求、使用 条件等,合理地选的取轴荷配。 表 1类汽车的轴荷分配 车型 满载 空载 前轴 后轴 前轴 后轴 货 车 44、短头式 4头式 632 25 30 19 60 73 65 75 50 44 48 31 41 51 46 63 汽车的驱动形式与发动机位置、汽车结构特点、车头形式和使用条件等均对轴荷分配又显著影响。如发动机前置前轮驱动乘用车和平头式商用车前轴负荷较大,而长头式货车前轴负荷较小。 当总体布置进行轴荷分配计算不能满足预定要求时,可通过重新布置某些总乘、部件的位置来调整。必要时,改变轴距也可行。 购买后包含有 纸和说明书 ,咨询 Q 197216396 21 第 2 章 制动器设计 动器的结构方案分析 动器分析 制动系的功用是使汽车以适当的减速度降速行驶直至停车;在下坡行驶时,使汽车 保持适当的稳定车速;使汽车可靠的停在原地或坡道上。 制动系统的一般工作原理是,利用与车身 (或车架 )相连的非旋转元件和与车轮 (或传动轴 )相连的旋转元件之间的相互摩擦来阻止车轮的转动或转动的趋势。而 制动器就是实现制动功能的主要部件。 制动器主要有摩擦式、液力式和电磁式等几种。电磁式制动器虽有作用滞后性好、易于连接而且接头可靠等优点,但因成本太高,只在一部分总质量较大的商用汽车上用作车轮制动器或缓速器;液力式制动器一般只作缓速器。目前广泛应用的仍为摩擦式制动器。 一般制动器都是通过其中的固定元件对旋转元件施 加制动力矩,使后者的旋转角速度降低,同时依靠车轮与地面的附着作用,产生路面对车轮的制动力以使汽车减速。凡利用固定元件与旋转元件工作表面的摩擦而产生制动力矩的制动器都成为摩擦制动器 摩擦式制动器按摩擦副结构形式的不同,可分为盘式、鼓式和带式三种。带式制动器只用作中央制动器;鼓式和盘式制动器的结构形式有多种,如下所示: 图 3动器分类 购买后包含有 纸和说明书 ,咨询 Q 197216396 22 式制动器 鼓式制动器是最早形式的汽车制动器 ,当盘式制动器还没有出现前,它已经广泛用于各类汽车上。但由于结构问题使它在制动过程中散热性能差和排水性能差,容易导致制动效率下降,因此在近三十年中,在轿车领域上已经逐步退出让位给盘式制动器。但由于成本比较低,仍然在一些经济类 汽车 中使用 。 鼓式制动器除了成本比较低之外,还有一个好处,就是便于与驻车(停车)制动组合在一起,凡是后轮为鼓式制动器的 汽车 ,其驻车制动器也组合在后轮制动器上。这是一个机械系统,它完全与车上制动液压系统是分离的:利用手操纵杆或驻车踏板拉紧钢拉索,操纵鼓式制动器的杠件扩展制动蹄,起到停车制动 作用,使得汽车不会溜动;松开钢拉索,回位弹簧使制动蹄恢复原位,制动力消失 。 典型的鼓式制动器主要由底板、制动鼓、制动蹄、轮缸(制动分泵)、回位弹簧、定位销等零部件组成。底板安装在车轴的固定位置上,它是固定不动的,上面装有制动蹄、轮缸、回位弹簧、定位销,承受制动时的旋转扭力。每一个鼓 都 有一对制动蹄,制动蹄上有摩擦衬片。制动鼓则是安装在轮毂上,是随车轮一起旋转的部件,它是由一定份量的铸铁做成,形状似 圆 鼓状。当制动时,轮缸活塞推动制动蹄压迫制动鼓,制动鼓受到摩擦减速,迫使车轮停止转动。 各种鼓式制动器各有利弊。就 制动效能而言,在基本结构参数和轮缸工作压力相同的条件下,自增力式制动器由于对摩擦助势作用利用得最为充分而居首位,以下依次为双领蹄式、领从蹄式、双从蹄式。但蹄鼓之间的摩擦系数本身是一个不稳定的因素,随制动鼓和摩擦片的材料、温度和表面状况 (如是否沾水、沾油,是否有烧结现象等 )的不同可在很大范围内变化。自增力式制动器的效能对摩擦系数的依赖性最大,因而其效能的热稳定性最差。 在制动过程中,自增力式制动器制动力矩的增长在某些情况下显得过于急速。双向自增力式制动器多用于轿车后轮,原因之一是便于兼充驻车制动器。 单向自增力式制动器只用于中、轻型汽车的前轮,因倒车制动时对前轮制动器效能的要求不高。双从蹄式制动器的制动效能虽然最低,但却具有最良好的效能稳定性,因而还是有少数华贵轿车为保证制动可靠性而采用。领从蹄制动器发展较早,其效能及效能稳定性均居于中游,且有结构较简单等优点,故目前仍相当广泛地用于各种汽车。所以选用领从蹄制动器。 购买后包含有 纸和说明书 ,咨询 Q 197216396 23 3、 图 2从蹄式制动器示意图 图为领从蹄式制动器示意图,设汽车前进时制动鼓旋转方向如图中箭 头所示。沿箭头方向看去,制动蹄 1 的支承点 3 在其前端,制动轮缸 6 所施加的促动力作用于其后端,因而该制动蹄张开时的旋转方向与制动鼓的旋转方向相同。具有这种属性的制动蹄称为领蹄。与此相反,制动蹄 2 的支承点 4 在后端,促动力加于其前端,其张开时的旋转方向与制动鼓的旋转方向相反。具有这种属性的制动蹄称为从蹄。当汽车倒驶,即制动鼓反向旋转时,蹄 1 变成从蹄,而蹄 2 则变成领蹄。这种在制动鼓正向旋转和反向旋转时,都有一个领蹄和一个从蹄的制动器即称为领从蹄式制动器。另还有双领蹄式(图 2-3(b))和双向增力式(图 2-3(c)) 。 按 制动蹄的支承形式可分为滑动支座式( 图 2-3(c)) 和支承销式( 图 2-3(b、 c))。 滑动支座式的制动蹄自由度数为2, 而支承销式的制动蹄自由度数为 1. 图 3动蹄分类 购买后包含有 纸和说明书 ,咨询 Q 197216396 24 动器的间隙 制动蹄在不工作的原始位置时,其摩擦片与制动鼓间应有合适的间隙,其设定值由汽车制造厂规定,一般在 何制动器摩擦副中的这一间隙 (以下简称制动器间隙 )如果过小,就不易保证彻底解除制动,造成摩擦副拖磨;过大又将使制动踏板行程太长,以致驾驶员操作不便,也会推迟制动器开始起作用的时刻 。但在制动器工作过程中,摩擦片的不断磨损将导致制动器间隙逐渐增大。情况严重时,即使将制动踏板踩到下极限位置,也产生不了足够的制动力矩。因此,制动器需要对间隙进行调节,这次采用一个凸轮机构来实现这一功能。 式制动器主要参数的确定 动鼓内径 D 输入力0动鼓内径越大,制动力矩越大,且散热能力也越强。但增大 动鼓与轮辋之间应保持足够的间隙,通常要求该间隙不小于 20则不仅制动鼓散热条件太差,而且轮辋受热后可能粘住内胎或烤坏气门嘴。制动鼓应有足够的壁厚,用来保证有较大的刚度和热容量,以减小制动时的温升。制动鼓的直径小,刚度就大,并有利于保证制动鼓的加工精度。 制动鼓直径与轮辋直径之比 D 范围如下: 轿车: D 车: D 动鼓内径尺寸应参照专业标准 309 1999制动鼓工作直径及制动蹄片宽度尺寸系列选取。 根据汽车选用的车轮轮辋直径 8 n=18 = ( =后在尺寸系列中选择 354 购买后包含有 纸和说明书 ,咨询 Q 197216396 25 图 2动器参数 擦衬片宽度 b 和包角 摩擦衬片宽度尺寸 片宽度尺寸取窄些,则磨损速度快,衬片寿命短;若衬片宽度尺寸取宽些,则质量大,不易加工,并且增加了成本。 制动鼓半径 片的摩擦面积为 。制动器各蹄衬片总的摩擦面积 制动时所受单位面积的正压力和能量负荷越小,从而磨损特性越好。 根据国外统计资料分析,单个车轮鼓式制动器的衬片面积随汽车总质量增大而增大,具体数据见表 2 1。 表 2 1 鼓式制动器的衬片面积 试验表明,摩擦衬片包角为: 90 130时,磨损最小,制动鼓温度最低,且制动效能最高。角减小虽然有利于散热,但单位压力过高将加速磨损。实际上包角两端处单位压力最小,因此过分延伸衬片的两端以加大包角,对减小单位压力的作用不大,而且将使制动不平顺,容易使制动器发生自锁。因此,汽车总质量 单个制动器总的衬片摩擦面积 Ap/商 120 200 用 150 250(多为 150 200) 250 400 车 7 300 650 7 550 1000 600 1500(多为 600 1200) 购买后包含有 纸和说明书 ,咨询 Q 197216396 26 包角一般不宜大于 140。 设计中,取摩擦衬片包角 135。 衬片宽度 过大将不易保证与制动鼓全面接触。制动衬片宽度尺寸系列见 309 1999。 擦衬片起始角0一般将衬片布置在制动蹄的中央,即令 2/900 。有时为了适应单位压力的分布情况,将衬片相对于最大压力点对称布置,以改善磨损均匀性和制动效能。 0=90= 制动器中心到张开力0e 在保证轮缸或制动凸轮能够布置于制动鼓内的条件下,应使距离 e(图 2 7)尽可能 大,以提高制动效能。初步设计时可暂定 e= e=354/2 终确定为 147 动蹄支承点位置坐标 a 和 c 应在保证两蹄支承端毛面不致互相干涉的条件下,使 a 尽可能大而 c 尽可能小 (图 2 7)。 初步设计时,也可暂定 a=右。 a=354/2 终确定 a 为 140 式制动器的设计计算 力沿衬片长度方向的分布规律 除摩擦衬片因有弹性容易变形外,制动鼓、蹄片和支承也有变形,所以计算法向压力在摩擦衬片上的分布规律比较困难。通常只考虑衬片径向变形的影响,其它零件变形的影响较小而忽略不计。 如图所示,将坐标原点取在制动鼓中心 标轴线通过蹄片的瞬时转动中心 购买后包含有 纸和说明书 ,咨询 Q 197216396 27 图 2动 器衬片受力示意图 此时蹄片在张开力和摩擦力作用下,绕支承销 1A 转动 d 角。摩擦衬片表面任意点 1B 沿蹄片转动的切线方向的变形就是线段 11其径向变形分量是这个线段在半径 为 于 d 很小,可认为1A 1190,故所求摩擦衬片的变形应为 11111111 s (2 1) 考虑到 ,那么分析等腰三角形 A 1B = ,所以表面的径向变形和压力为 dR (2 2) (2 3) 综上所述可知,新蹄片压力沿摩擦衬片长度的分布符合正弦曲线规律,可用上式计算。 沿摩擦衬片长度方向压力分布的不均匀程度,可用不均匀系数厶评价 (2 4) 式中,下,假想压力分布均匀时的平均压力; 算蹄片上的制动力矩 计算鼓式制动器制动器,必须查明蹄压紧到制功鼓上的力与产生制动力矩之间的关系。 为计算有一个自由度的蹄片上的力矩,在摩擦衬片表面取一横向微元面积,如图 2 7所示。它位于 a 角内,面积为 其中 鼓作用在微元面积上的法向力为 1 a x(2 5) 购买后包含有 纸和说明书 ,咨询 Q 197216396 28 同时,摩擦力 1生的制动力矩为 (f 为摩擦因数,计算时取 i s a (2 6) 从 到 区段积分上式得到 2m a x1 co s 7) 2111 8) 从式 (2 7)和式 (2 8)能计算出不均匀系数 c o sc o s (2 9) 从式 (2 7)和式 (2 8)能计算出制动力矩与压力之间的关系。但是,实际计算时还必须建立制动力矩与张开力0 紧蹄产生的制动力矩1111 (2 10) 式中, 1F 为紧蹄的法向合力; 1R 为 摩擦力 1作用半径 (图 2 7)。 图 2算制动力矩简图 购买后包含有 纸和说明书 ,咨询 Q 197216396 29 图 2算张开力简图 如果已知蹄的几何参数 (图 2 7中的 h a 和法向压力的大小,便能用式 (2 7)计算出蹄的制动力矩。 为计算随张开力01出蹄上的力平衡方程式 00)s c o sc o 1111001 (2 11) 式中, 1为 1的作用线之间的夹角; F 为支承反力在 解联立方程式 (2 11)得到 111 011 s sc F (2 12) 101111 1011 s M (2 13) 对于松蹄也能用类似的方程式表示,即 (2 14) 为计算 l、 2、及 ,必须求出法向力 F 及其分量,沿着相应的轴线作 用有 ,它们的合力为 2 5)。有 202222 2022 s i M 购买后包含有 纸和说明书 ,咨询 Q 197216396 30 4 2s i i i ns i n m a a x (2 14) 4 2c o o ss i nc o s
温馨提示:
1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
2: 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
3.本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
提示  人人文库网所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
关于本文
本文标题:YD5141SYZ后压缩式垃圾车的上装箱体设计(优秀版)(全套含CAD图纸)
链接地址:https://www.renrendoc.com/p-1475004.html

官方联系方式

2:不支持迅雷下载,请使用浏览器下载   
3:不支持QQ浏览器下载,请用其他浏览器   
4:下载后的文档和图纸-无水印   
5:文档经过压缩,下载后原文更清晰   
关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

网站客服QQ:2881952447     

copyright@ 2020-2025  renrendoc.com 人人文库版权所有   联系电话:400-852-1180

备案号:蜀ICP备2022000484号-2       经营许可证: 川B2-20220663       公网安备川公网安备: 51019002004831号

本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知人人文库网,我们立即给予删除!