




已阅读5页,还剩15页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
顺城区实验中学2018-2019学年高二上学期数学期末模拟试卷含解析班级_ 座号_ 姓名_ 分数_一、选择题1 函数f(x)=lnx的零点所在的大致区间是( )A(1,2)B(2,3)C(1,)D(e,+)2 已知三次函数f(x)=ax3+bx2+cx+d的图象如图所示,则=( )A1B2C5D33 若复数(2+ai)2(aR)是实数(i是虚数单位),则实数a的值为( )A2B2C0D24 若函数的图象关于直线对称,且当,时,则等于( )A B C. D5 设数集M=x|mxm+,N=x|nxn,P=x|0x1,且M,N都是集合P的子集,如果把ba叫做集合x|axb的“长度”,那么集合MN的“长度”的最小值是( )ABCD6 已知a,b是实数,则“a2bab2”是“”的( )A充分而不必要条件B必要而不充分条件C充要条件D既不充分也不必要条件 7 阅读右图所示的程序框图,若,则输出的的值等于( )A28 B36 C45 D1208 冶炼某种金属可以用旧设备和改造后的新设备,为了检验用这两种设备生产的产品中所含杂质的关系,调查结果如下表所示杂质高杂质低旧设备37121新设备22202根据以上数据,则( )A含杂质的高低与设备改造有关B含杂质的高低与设备改造无关C设备是否改造决定含杂质的高低D以上答案都不对9 已知平面向量=(1,2),=(2,m),且,则=( )A(5,10)B(4,8)C(3,6)D(2,4)10在ABC中,若A=2B,则a等于( )A2bsinAB2bcosAC2bsinBD2bcosB11函数y=2sin2x+sin2x的最小正周期( )ABCD212数列an的通项公式为an=n+p,数列bn的通项公式为bn=2n5,设cn=,若在数列cn中c8cn(nN*,n8),则实数p的取值范围是( )A(11,25)B(12,16C(12,17)D16,17)二、填空题13如图,一船以每小时20km的速度向东航行,船在A处看到一个灯塔B在北偏东60方向,行驶4小时后,船到达C处,看到这个灯塔在北偏东15方向,这时船与灯塔间的距离为km14i是虚数单位,化简: =15如果实数满足等式,那么的最大值是 16某公司租赁甲、乙两种设备生产两类产品,甲种设备每天能生产类产品5件和类产品10件,乙种设备每天能生产类产品6件和类产品20件.已知设备甲每天的租赁费为200元,设备乙每天的租赁费用为300元,现该公司至少要生产类产品50件,类产品140件,所需租赁费最少为_元.17已知函数的一条对称轴方程为,则函数的最大值为_【命题意图】本题考查三角变换、三角函数的对称性与最值,意在考查逻辑思维能力、运算求解能力、转化思想与方程思想18球O的球面上有四点S,A,B,C,其中O,A,B,C四点共面,ABC是边长为2的正三角形,平面SAB平面ABC,则棱锥SABC的体积的最大值为三、解答题19【徐州市第三中学20172018学年度高三第一学期月考】为了制作广告牌,需在如图所示的铁片上切割出一个直角梯形,已知铁片由两部分组成,半径为1的半圆及等腰直角三角形,其中,为裁剪出面积尽可能大的梯形铁片(不计损耗),将点放在弧上,点放在斜边上,且,设.(1)求梯形铁片的面积关于的函数关系式;(2)试确定的值,使得梯形铁片的面积最大,并求出最大值.20已知数列an的前n项和为Sn,首项为b,若存在非零常数a,使得(1a)Sn=ban+1对一切nN*都成立()求数列an的通项公式;()问是否存在一组非零常数a,b,使得Sn成等比数列?若存在,求出常数a,b的值,若不存在,请说明理由21【南通中学2018届高三10月月考】设,函数,其中是自然对数的底数,曲线在点处的切线方程为.()求实数、的值;()求证:函数存在极小值;()若,使得不等式成立,求实数的取值范围.22(本小题满分12分)在等比数列中,(1)求数列的通项公式;(2)设,且为递增数列,若,求证:23(本小题满分16分) 给出定义在上的两个函数,. (1)若在处取最值求的值; (2)若函数在区间上单调递减,求实数的取值范围; (3)试确定函数的零点个数,并说明理由24如图,点A是单位圆与x轴正半轴的交点,B(,)(I)若AOB=,求cos+sin的值;(II)设点P为单位圆上的一个动点,点Q满足=+若AOP=2,表示|,并求|的最大值 顺城区实验中学2018-2019学年高二上学期数学期末模拟试卷含解析(参考答案)一、选择题1 【答案】B【解析】解:函数的定义域为:(0,+),有函数在定义域上是递增函数,所以函数只有唯一一个零点又f(2)ln210,f(3)=ln30f(2)f(3)0,函数f(x)=lnx的零点所在的大致区间是(2,3)故选:B2 【答案】C【解析】解:由三次函数的图象可知,x=2函数的极大值,x=1是极小值,即2,1是f(x)=0的两个根,f(x)=ax3+bx2+cx+d,f(x)=3ax2+2bx+c,由f(x)=3ax2+2bx+c=0,得2+(1)=1,12=2,即c=6a,2b=3a,即f(x)=3ax2+2bx+c=3ax23ax6a=3a(x2)(x+1),则=5,故选:C【点评】本题主要考查函数的极值和导数之间的关系,以及根与系数之间的关系的应用,考查学生的计算能力3 【答案】C【解析】解:复数(2+ai)2=4a2+4ai是实数,4a=0,解得a=0故选:C【点评】本题考查了复数的运算法则、复数为实数的充要条件,属于基础题4 【答案】C【解析】考点:函数的图象与性质.【方法点晴】本题主要考查函数的图象与性质,涉及数形结合思想、函数与方程思想、转化化归思想,考查逻辑推理能力、化归能力和计算能力,综合程度高,属于较难题型首先利用数形结合思想和转化化归思想可得,解得,从而,再次利用数形结合思想和转化化归思想可得关于直线对称,可得,从而5 【答案】C【解析】解:集M=x|mxm+,N=x|nxn,P=x|0x1,且M,N都是集合P的子集,根据题意,M的长度为,N的长度为,当集合MN的长度的最小值时,M与N应分别在区间0,1的左右两端,故MN的长度的最小值是=故选:C6 【答案】C【解析】解:由a2bab2得ab(ab)0,若ab0,即ab,则ab0,则成立,若ab0,即ab,则ab0,则a0,b0,则成立,若则,即ab(ab)0,即a2bab2成立,即“a2bab2”是“”的充要条件,故选:C【点评】本题主要考查充分条件和必要条件的判断,根据不等式的性质是解决本题的关键7 【答案】C 【解析】解析:本题考查程序框图中的循环结构,当时,选C8 【答案】 A【解析】独立性检验的应用【专题】计算题;概率与统计【分析】根据所给的数据写出列联表,把列联表的数据代入观测值的公式,求出两个变量之间的观测值,把观测值同临界值表中的数据进行比较,得到有99%的把握认为含杂质的高低与设备是否改造是有关的【解答】解:由已知数据得到如下22列联表杂质高杂质低合计旧设备37121158新设备22202224合计59323382由公式2=13.11,由于13.116.635,故有99%的把握认为含杂质的高低与设备是否改造是有关的【点评】本题考查独立性检验,考查写出列联表,这是一个基础题9 【答案】B【解析】解:排除法:横坐标为2+(6)=4,故选B10【答案】D【解析】解:A=2B,sinA=sin2B,又sin2B=2sinBcosB,sinA=2sinBcosB,根据正弦定理=2R得:sinA=,sinB=,代入sinA=2sinBcosB得:a=2bcosB故选D11【答案】C【解析】解:函数y=2sin2x+sin2x=2+sin2x=sin(2x)+1,则函数的最小正周期为=,故选:C【点评】本题主要考查三角恒等变换,函数y=Asin(x+)的周期性,利用了函数y=Asin(x+)的周期为,属于基础题12【答案】C【解析】解:当anbn时,cn=an,当anbn时,cn=bn,cn是an,bn中的较小者,an=n+p,an是递减数列,bn=2n5,bn是递增数列,c8cn(n8),c8是cn的最大者,则n=1,2,3,7,8时,cn递增,n=8,9,10,时,cn递减,n=1,2,3,7时,2n5n+p总成立,当n=7时,2757+p,p11,n=9,10,11,时,2n5n+p总成立,当n=9时,2959+p,成立,p25,而c8=a8或c8=b8,若a8b8,即23p8,p16,则c8=a8=p8,p8b7=275,p12,故12p16, 若a8b8,即p8285,p16,c8=b8=23,那么c8c9=a9,即8p9,p17,故16p17,综上,12p17故选:C二、填空题13【答案】 【解析】解:根据题意,可得出B=7530=45,在ABC中,根据正弦定理得:BC=海里,则这时船与灯塔的距离为海里故答案为14【答案】1+2i 【解析】解: =故答案为:1+2i15【答案】【解析】 考点:直线与圆的位置关系的应用. 1【方法点晴】本题主要考查了直线与圆的位置关系的应用,其中解答中涉及到点到直线的距离公式、直线与圆相切的判定与应用,着重考查了学生分析问题和解答问题的能力,以及推理与运算能力和转化与化归的思想方法,本题的解答中把的最值转化为直线与圆相切是解答的关键,属于中档试题.16【答案】【解析】111试题分析:根据题意设租赁甲设备,乙设备,则,求目标函数的最小值.作出可行域如图所示,从图中可以看出,直线在可行域上移动时,当直线的截距最小时,取最小值.1111考点:简单线性规划.【方法点晴】本题是一道关于求实际问题中的最值的题目,可以采用线性规划的知识进行求解;细查题意,设甲种设备需要生产天,乙种设备需要生产天,该公司所需租赁费为元,则,接下来列出满足条件的约束条件,结合目标函数,然后利用线性规划的应用,求出最优解,即可得出租赁费的最小值.17【答案】1【解析】18【答案】 【解析】解:由题意画出几何体的图形如图由于面SAB面ABC,所以点S在平面ABC上的射影H落在AB上,根据球体的对称性可知,当S在“最高点”,也就是说H为AB中点时,SH最大,棱锥SABC的体积最大ABC是边长为2的正三角形,所以球的半径r=OC=CH=在RTSHO中,OH=OC=OSHSO=30,求得SH=OScos30=1,体积V=Sh=221=故答案是【点评】本题考查锥体体积计算,根据几何体的结构特征确定出S位置是关键考查空间想象能力、计算能力三、解答题19【答案】(1),其中.(2)时,【解析】试题分析:(1)求梯形铁片的面积关键是用表示上下底及高,先由图形得,这样可得高,再根据等腰直角三角形性质得,最后根据梯形面积公式得,交代定义域(2)利用导数求函数最值:先求导数,再求导函数零点,列表分析函数单调性变化规律,确定函数最值试题解析:(1)连接,根据对称性可得且,所以,所以,其中考点:利用导数求函数最值【方法点睛】利用导数解答函数最值的一般步骤:第一步:利用f(x)0或f(x)0求单调区间;第二步:解f(x)0得两个根x1、x2;第三步:比较两根同区间端点的大小;第四步:求极值;第五步:比较极值同端点值的大小20【答案】 【解析】解:()数列an的前n项和为Sn,首项为b,存在非零常数a,使得(1a)Sn=ban+1对一切nN*都成立,由题意得当n=1时,(1a)b=ba2,a2=ab=aa1,当n2时,(1a)Sn=ban+1,(1a)Sn+1=ban+1,两式作差,得:an+2=aan+1,n2,an是首项为b,公比为a的等比数列,()当a=1时,Sn=na1=nb,不合题意,当a1时,若,即,化简,得a=0,与题设矛盾,故不存在非零常数a,b,使得Sn成等比数列【点评】本题考查数列的通项公式的求法,考查使得数列成等比数列的非零常数是否存在的判断与求法,是中档题,解题时要认真审题,注意等比数列的性质的合理运用21【答案】();()证明见解析;().【解析】试题分析:()利用导函数研究函数的切线,得到关于实数a,b的方程组,求解方程组可得;()结合()中求得的函数的解析式首先求解导函数,然后利用导函数讨论函数的单调性即可确定函数存在极小值;试题解析:(),由题设得,;()由()得,函数在是增函数,且函数图像在上不间断,使得,结合函数在是增函数有:)递减极小值递增函数存在极小值;(),使得不等式成立,即,使得不等式成立(*),令,则,结合()得,其中,满足,即,在内单调递增,结合(*)有,即实数的取值范围为22【答案】(1);(2)证明见解析.【解析】试题分析:(1)将化为,联立方程组,求出,可得;(2)由于为递增数列,所以取,化简得,其前项和为.考点:数列与裂项求和法123【答案】(1) (2) (3)两个零点【解析】试题分析:(1) 开区间的最值在极值点取得,因此在处取极值,即 ,解得 ,需验证(2) 在区间上单调递减,转化为在区间上恒成立,再利用变量分离转化为对应函数最值:的最大值,根据分式函数求最值方法求得最大值2(3)先利用导数研究函数单调性:当时,递减,当时,递增;再考虑区间端点函数值的符号:, , ,结合零点存在定理可得零点个数试题解析:(1) 由已知,即: ,解得: 经检验 满足题意所以 4分因为,所以,所以所以,所以 10分(3)函数有两个零点因为所以 12分当时,当时,所以, 14分 , 故由零点存在定理可知: 函数在 存在一个零点,函数在 存在一个零点,所以函数有两个零点 16分考点:函数极值与最值,利用导数研究函数零点,利用导数研
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- XJJ 103-2019 生态修复城市修补技术导则
- 安全应急考试题及答案
- 安徽导游资格证笔试题及答案
- qc基础知识考试试题及答案歌尔
- oppo秋招笔试题目及答案
- 传媒广告代签合同全权委托授权书
- 江苏地区离婚财产分配与子女监护权约定合同样本
- 高考专业兴趣测试题及答案
- 慢性扁桃体炎护理诊断
- 2025至2030中国大葱种植行业产业运行态势及投资规划深度研究报告
- 2025年教师资格证中学综合素质+教育知识与能力真题及答案
- 智能楼宇节能改造实施方案
- 2025年电信岗位认证考试题库
- 航空技术革新与发展趋势
- 口腔科国庆节活动方案
- 2025四川成都广播影视集团有限责任公司招聘22人笔试参考题库附带答案详解
- 弹性工作制激励机制设计-洞察及研究
- 骨软骨瘤恶变信号:识别、诊断与临床管理
- 安全生产盲区
- 社区居民健康档案建立
- 非公企业党建培训课件
评论
0/150
提交评论