沂源县第二中学2018-2019学年高二上学期数学期末模拟试卷含解析_第1页
沂源县第二中学2018-2019学年高二上学期数学期末模拟试卷含解析_第2页
沂源县第二中学2018-2019学年高二上学期数学期末模拟试卷含解析_第3页
沂源县第二中学2018-2019学年高二上学期数学期末模拟试卷含解析_第4页
沂源县第二中学2018-2019学年高二上学期数学期末模拟试卷含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

沂源县第二中学2018-2019学年高二上学期数学期末模拟试卷含解析班级_ 座号_ 姓名_ 分数_一、选择题1 对于函数f(x),若a,b,cR,f(a),f(b),f(c)为某一三角形的三边长,则称f(x)为“可构造三角形函数”,已知函数f(x)=是“可构造三角形函数”,则实数t的取值范围是( )ACD2 已知直线mxy+1=0交抛物线y=x2于A、B两点,则AOB( )A为直角三角形B为锐角三角形C为钝角三角形D前三种形状都有可能3 已知变量x与y负相关,且由观测数据算得样本平均数=3, =2.7,则由该观测数据算得的线性回归方程可能是( )A =0.2x+3.3B =0.4x+1.5C =2x3.2D =2x+8.64 设D为ABC所在平面内一点,则( )ABCD5 已知ABC中,a=1,b=,B=45,则角A等于( )A150B90C60D306 高考临近,学校为丰富学生生活,缓解高考压力,特举办一场高三学生队与学校校队的男子篮球比赛由于爱好者众多,高三学生队队员指定由5班的6人、16班的8人、33班的10人按分层抽样构成一个12人的篮球队首发要求每个班至少1人,至多2人,则首发方案数为( )A720B270C390D3007 (m+1)x2(m1)x+3(m1)0对一切实数x恒成立,则实数m的取值范围是( )A(1,+)B(,1)CD8 已知定义在R上的可导函数y=f(x)是偶函数,且满足xf(x)0, =0,则满足的x的范围为( )A(,)(2,+)B(,1)(1,2)C(,1)(2,+)D(0,)(2,+)9 已知正ABC的边长为a,那么ABC的平面直观图ABC的面积为( )ABCD10已知,则“”是“”的( )A. 充分必要条件 B. 充分不必要条件 C. 必要不充分条件 D. 既不充分也不必要条件【命题意图】本题考查三角函数的性质与充分必要条件等基础知识,意在考查构造函数的思想与运算求解能力.11命题:“x0,都有x2x0”的否定是( )Ax0,都有x2x0Bx0,都有x2x0Cx0,使得x2x0Dx0,使得x2x012函数y=2|x|的定义域为a,b,值域为1,16,当a变动时,函数b=g(a)的图象可以是( )ABCD二、填空题13若实数满足,则的最小值为 14已知双曲线=1(a0,b0)的一条渐近线方程是y=x,它的一个焦点在抛物线y2=48x的准线上,则双曲线的方程是 15已知A(1,0),P,Q是单位圆上的两动点且满足,则+的最大值为16已知|=1,|=2,与的夹角为,那么|+|=17设x,y满足约束条件,则目标函数z=2x3y的最小值是18在正方形中,,分别是边上的动点,当时,则的取值范围为 【命题意图】本题考查平面向量数量积、点到直线距离公式等基础知识,意在考查坐标法思想、数形结合思想和基本运算能力三、解答题19已知函数()(1)求的单调区间和极值;(2)求在上的最小值(3)设,若对及有恒成立,求实数的取值范围20设函数f(x)=1+(1+a)xx2x3,其中a0()讨论f(x)在其定义域上的单调性;()当x时,求f(x)取得最大值和最小值时的x的值21已知函数,(1)判断的单调性并且证明;(2)求在区间上的最大值和最小值22(本小题满分12分)某旅行社组织了100人旅游散团,其年龄均在岁间,旅游途中导游发现该旅游散团人人都会使用微信,所有团员的年龄结构按分成5组,分别记为,其频率分布直方图如下图所示()根据频率分布直方图,估计该旅游散团团员的平均年龄;()该团导游首先在三组中用分层抽样的方法抽取了名团员负责全团协调,然后从这6名团员中随机选出2名团员为主要协调负责人,求选出的2名团员均来自组的概率23如图,四边形是等腰梯形,四边形 是矩形,平面,其中分别是的中点,是的中点(1)求证: 平面;(2)平面. 24【南师附中2017届高三模拟二】已知函数(1)试讨论的单调性;(2)证明:对于正数,存在正数,使得当时,有;(3)设(1)中的的最大值为,求得最大值沂源县第二中学2018-2019学年高二上学期数学期末模拟试卷含解析(参考答案)一、选择题1 【答案】D【解析】解:由题意可得f(a)+f(b)f(c)对于a,b,cR都恒成立,由于f(x)=1+,当t1=0,f(x)=1,此时,f(a),f(b),f(c)都为1,构成一个等边三角形的三边长,满足条件当t10,f(x)在R上是减函数,1f(a)1+t1=t,同理1f(b)t,1f(c)t,由f(a)+f(b)f(c),可得 2t,解得1t2当t10,f(x)在R上是增函数,tf(a)1,同理tf(b)1,tf(c)1,由f(a)+f(b)f(c),可得 2t1,解得1t综上可得,t2,故实数t的取值范围是,2,故选D【点评】本题主要考查了求参数的取值范围,以及构成三角形的条件和利用函数的单调性求函数的值域,同时考查了分类讨论的思想,属于难题2 【答案】A【解析】解:设A(x1,x12),B(x2,x22),将直线与抛物线方程联立得,消去y得:x2mx1=0,根据韦达定理得:x1x2=1,由=(x1,x12),=(x2,x22),得到=x1x2+(x1x2)2=1+1=0,则,AOB为直角三角形故选A【点评】此题考查了三角形形状的判断,涉及的知识有韦达定理,平面向量的数量积运算,以及两向量垂直时满足的条件,曲线与直线的交点问题,常常联立曲线与直线的方程,消去一个变量得到关于另外一个变量的一元二次方程,利用韦达定理来解决问题,本题证明垂直的方法为:根据平面向量的数量积为0,两向量互相垂直3 【答案】A【解析】解:变量x与y负相关,排除选项B,C;回归直线方程经过样本中心,把=3, =2.7,代入A成立,代入D不成立故选:A4 【答案】A【解析】解:由已知得到如图由=;故选:A【点评】本题考查了向量的三角形法则的运用;关键是想法将向量表示为5 【答案】D【解析】解:,B=45根据正弦定理可知 sinA=A=30故选D【点评】本题主要考查正弦定理的应用属基础题6 【答案】C 解析:高三学生队队员指定由5班的6人、16班的8人、33班的10人按分层抽样构成一个12人的篮球队各个班的人数有5班的3人、16班的4人、33班的5人,首发共有1、2、2;2、1、2;2、2、1类型;所求方案有: +=390故选:C7 【答案】C【解析】解:不等式(m+1)x2(m1)x+3(m1)0对一切xR恒成立,即(m+1)x2(m1)x+3(m1)0对一切xR恒成立若m+1=0,显然不成立若m+10,则 解得a故选C【点评】本题的求解中,注意对二次项系数的讨论,二次函数恒小于0只需8 【答案】D【解析】解:当x0时,由xf(x)0,得f(x)0,即此时函数单调递减,函数f(x)是偶函数,不等式等价为f(|),即|,即或,解得0x或x2,故x的取值范围是(0,)(2,+)故选:D【点评】本题主要考查不等式的求解,根据函数奇偶性和单调性之间的关系是解决本题的关键9 【答案】D【解析】解:正ABC的边长为a,正ABC的高为,画到平面直观图ABC后,“高”变成原来的一半,且与底面夹角45度,ABC的高为=,ABC的面积S=故选D【点评】本题考查平面图形的直观图的性质和应用,解题时要认真审题,仔细解答,注意合理地进行等价转化10【答案】A.【解析】,设,显然是偶函数,且在上单调递增,故在上单调递减,故是充分必要条件,故选A.11【答案】C【解析】解:命题是全称命题,则根据全称命题的否定是特称命题得命题的否定是:x0,使得x2x0,故选:C【点评】本题主要考查含有量词的命题 的否定,比较基础12【答案】B【解析】解:根据选项可知a0a变动时,函数y=2|x|的定义域为a,b,值域为1,16,2|b|=16,b=4故选B【点评】本题主要考查了指数函数的定义域和值域,同时考查了函数图象,属于基础题二、填空题13【答案】5【解析】考点:利用导数求最值【方法点睛】利用导数解答函数最值的一般步骤:第一步:利用f(x)0或f(x)0求单调区间;第二步:解f(x)0得两个根x1、x2;第三步:比较两根同区间端点的大小;第四步:求极值;第五步:比较极值同端点值的大小14【答案】【解析】解:因为抛物线y2=48x的准线方程为x=12,则由题意知,点F(12,0)是双曲线的左焦点,所以a2+b2=c2=144,又双曲线的一条渐近线方程是y=x,所以=,解得a2=36,b2=108,所以双曲线的方程为故答案为:【点评】本题考查双曲线的标准方程,以及双曲线的简单性质的应用,确定c和a2的值,是解题的关键15【答案】 【解析】解:设=,则=,的方向任意+=1,因此最大值为故答案为:【点评】本题考查了数量积运算性质,考查了推理能力 与计算能力,属于中档题16【答案】 【解析】解:|=1,|=2,与的夹角为,=1=1|+|=故答案为:【点评】本题考查了数量积的定义及其运算性质,考查了推理能力与计算能力,属于中档题17【答案】6 【解析】解:由约束条件,得可行域如图,使目标函数z=2x3y取得最小值的最优解为A(3,4),目标函数z=2x3y的最小值为z=2334=6故答案为:618【答案】(,)上的点到定点的距离,其最小值为,最大值为,故的取值范围为三、解答题19【答案】(1)的单调递增区间为,单调递减区间为,无极大值;(2)时,时,时,;(3).【解析】(2)当,即时,在上递增,;当,即时,在上递减,;当,即时,在上递减,在上递增,(3),由,得,当时,;当时,在上递减,在递增,故,又,当时,对恒成立等价于;又对恒成立,故1考点:1、利用导数研究函数的单调性进而求函数的最值;2、不等式恒成立问题及分类讨论思想的应用.【方法点睛】本题主要考查利用导数研究函数的单调性进而求函数的最值、不等式恒成立问题及分类讨论思想的应用.属于难题. 数学中常见的思想方法有:函数与方程的思想、分类讨论思想、转化与划归思想、数形结合思想、建模思想等等,分类讨论思想解决高中数学问题的一种重要思想方法,是中学数学四种重要的数学思想之一,尤其在解决含参数问题发挥着奇特功效,大大提高了解题能力与速度.运用这种方法的关键是将题设条件研究透,这样才能快速找准突破点. 充分利用分类讨论思想方法能够使问题条理清晰,进而顺利解答,希望同学们能够熟练掌握并应用与解题当中.本题(2)就是根据这种思想讨论函数单调区间的.20【答案】 【解析】解:()f(x)的定义域为(,+),f(x)=1+a2x3x2,由f(x)=0,得x1=,x2=,x1x2,由f(x)0得x,x;由f(x)0得x;故f(x)在(,)和(,+)单调递减,在(,)上单调递增;()a0,x10,x20,x,当时,即a4当a4时,x21,由()知,f(x)在上单调递增,f(x)在x=0和x=1处分别取得最小值和最大值当0a4时,x21,由()知,f(x)在单调递增,在上单调递减,因此f(x)在x=x2=处取得最大值,又f(0)=1,f(1)=a,当0a1时,f(x)在x=1处取得最小值;当a=1时,f(x)在x=0和x=1处取得最小值;当1a4时,f(x)在x=0处取得最小值21【答案】(1)增函数,证明见解析;(2)最小值为,最大值为.【解析】试题分析:(1)在上任取两个数,则有,所以在上是增函数;(2)由(1)知,最小值为,最大值为.试题解析:在上任取两个数,则有,所以在上是增函数所以当时,当时,.考点:函数的单调性证明【方法点晴】本题主要考查利用定义法求证函数的单调性并求出单调区间,考查化归与转化的数学思想方法.先在定义域内任取两个数,然后作差,利用十字相乘法、提公因式法等方法化简式子成几个因式的乘积,判断最后的结果是大于零韩式小于零,如果小于零,则函数为增函数,如果大于零,则函数为减函数.122【答案】【解析】【命题意图】本题考查频率分布直方图与平均数、分层抽样、古典概型等基础知识,意在考查审读能力、识图能力、获取数据信息的能力23【答案】(1)证明见解析;(2)证明见解析【解析】考点:直线与平面平行的判定;直线与平面垂直的判定.24【答案】(1)证明

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论