




已阅读5页,还剩15页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
漯河市民族中学2018-2019学年高二上学期数学期末模拟试卷含解析班级_ 座号_ 姓名_ 分数_一、选择题1 已知集合A=y|y=x2+2x3,则有( )AABBBACA=BDAB=2 设函数,若对任意,都存在,使得,则实数的最大值为( )A B C. D43 设集合A=x|y=ln(x1),集合B=y|y=2x,则AB( )A(0,+)B(1,+)C(0,1)D(1,2)4 如右图,在长方体中,=11,=7,=12,一质点从顶点A射向点,遇长方体的面反射(反射服从光的反射原理),将次到第次反射点之间的线段记为,将线段竖直放置在同一水平线上,则大致的图形是( )ABCD5 在ABC中,角A,B,C所对的边分别是a,b,c,若+1=0,则角B的度数是( )A60B120C150D60或1206 运行如图所示的程序框图,输出的所有实数对(x,y)所对应的点都在某函数图象上,则该函数的解析式为( )Ay=x+2By=Cy=3xDy=3x37 下列四个命题中的真命题是( )A经过定点的直线都可以用方程表示B经过任意两个不同点、的直线都可以用方程表示C不经过原点的直线都可以用方程表示D经过定点的直线都可以用方程表示8 已知点A(1,2),B(3,1),则线段AB的垂直平分线的方程是( )A4x+2y=5B4x2y=5Cx+2y=5Dx2y=59 已知角的终边经过点,则的值为( )A B C. D010设,在约束条件下,目标函数的最大值小于2,则的取值范围为( )A B C. D11设为双曲线的右焦点,若的垂直平分线与渐近线在第一象限内的交点到另一条渐近线的距离为,则双曲线的离心率为( )ABCD3【命题意图】本题考查双曲线方程与几何性质,意在考查逻辑思维能力、运算求解能力、方程思想12如图所示,网格纸表示边长为1的正方形,粗实线画出的是某几何体的三视图,则该几何体的体积为( ) A4 B8 C12 D20【命题意图】本题考查三视图、几何体的体积等基础知识,意在考查空间想象能力和基本运算能力二、填空题13不等式恒成立,则实数的值是_.14在棱长为1的正方体ABCDA1B1C1D1中,M是A1D1的中点,点P在侧面BCC1B1上运动现有下列命题:若点P总保持PABD1,则动点P的轨迹所在曲线是直线;若点P到点A的距离为,则动点P的轨迹所在曲线是圆;若P满足MAP=MAC1,则动点P的轨迹所在曲线是椭圆;若P到直线BC与直线C1D1的距离比为1:2,则动点P的轨迹所在曲线是双曲线;若P到直线AD与直线CC1的距离相等,则动点P的轨迹所在曲线是抛物丝其中真命题是(写出所有真命题的序号)15在(1+x)(x2+)6的展开式中,x3的系数是16已知函数为定义在区间2a,3a1上的奇函数,则a+b=17已知函数f(x)是定义在R上的单调函数,且满足对任意的实数x都有ff(x)2x=6,则f(x)+f(x)的最小值等于18某公司对140名新员工进行培训,新员工中男员工有80人,女员工有60人,培训结束后用分层抽样的方法调查培训结果. 已知男员工抽取了16人,则女员工应抽取人数为 .三、解答题19如图,四面体ABCD中,平面ABC平面BCD,AC=AB,CB=CD,DCB=120,点E在BD上,且CE=DE()求证:ABCE;()若AC=CE,求二面角ACDB的余弦值20(本小题满分10分)已知圆过点,.(1)若圆还过点,求圆的方程; (2)若圆心的纵坐标为,求圆的方程.21(本小题满分14分)设函数,(其中,).(1)若,求的单调区间;(2)若,讨论函数在上零点的个数.【命题意图】本题主要考查利用导数研究函数的单调性,最值、通过研究函数图象与性质,讨论函数的零点个数,考查考生运算求解能力、转化能力和综合应用能力,是难题.22某实验室一天的温度(单位:)随时间(单位;h)的变化近似满足函数关系;(1) 求实验室这一天的最大温差;(2) 若要求实验室温度不高于,则在哪段时间实验室需要降温?23【徐州市2018届高三上学期期中】已知函数(,是自然对数的底数).(1)若函数在区间上是单调减函数,求实数的取值范围;(2)求函数的极值;(3)设函数图象上任意一点处的切线为,求在轴上的截距的取值范围24(本小题满分13分)椭圆:的左、右焦点分别为、,直线经过点与椭圆交于点,点在轴的上方当时,()求椭圆的方程;()若点是椭圆上位于轴上方的一点, ,且,求直线的方程漯河市民族中学2018-2019学年高二上学期数学期末模拟试卷含解析(参考答案)一、选择题1 【答案】B【解析】解:y=x2+2x3=(x+1)24,y4则A=y|y4x0,x+2=2(当x=,即x=1时取“=”),B=y|y2,BA故选:B【点评】本题考查子集与真子集,求解本题,关键是将两个集合进行化简,由子集的定义得出两个集合之间的关系,再对比选项得出正确选项2 【答案】A111.Com【解析】试题分析:设的值域为,因为函数在上的值域为,所以,因此至少要取遍中的每一个数,又,于是,实数需要满足或,解得考点:函数的性质.【方法点晴】本题主要考查函数的性质用,涉及数形结合思想、函数与方程思想、转和化化归思想,考查逻辑推理能力、化归能力和计算能力,综合程度高,属于较难题型。首先求出,再利用转化思想将命题条件转化为,进而转化为至少要取遍中的每一个数,再利用数形结合思想建立不等式组:或,从而解得3 【答案】A【解析】解:集合A=x|y=ln(x1)=(1,+),集合B=y|y=2x=(0,+)则AB=(0,+)故选:A【点评】本题考查了集合的化简与运算问题,是基础题目4 【答案】C【解析】根据题意有:A的坐标为:(0,0,0),B的坐标为(11,0,0),C的坐标为(11,7,0),D的坐标为(0,7,0);A1的坐标为:(0,0,12),B1的坐标为(11,0,12),C1的坐标为(11,7,12),D1的坐标为(0,7,12);E的坐标为(4,3,12)(1)l1长度计算所以:l1=|AE|=13。(2)l2长度计算将平面A1B1C1D1沿Z轴正向平移AA1个单位,得到平面A2B2C2D2;显然有:A2的坐标为:(0,0,24),B2的坐标为(11,0,24),C2的坐标为(11,7,24),D2的坐标为(0,7,24);显然平面A2B2C2D2和平面ABCD关于平面A1B1C1D1对称。设AE与的延长线与平面A2B2C2D2相交于:E2(xE2,yE2,24)根据相识三角形易知:xE2=2xE=24=8,yE2=2yE=23=6,即:E2(8,6,24)根据坐标可知,E2在长方形A2B2C2D2内。5 【答案】A【解析】解:根据正弦定理有: =,代入已知等式得:+1=0,即1=,整理得:2sinAcosBcosBsinC=sinBcosC,即2sinAcosB=sinBcosC+cosBsinC=sin(B+C),又A+B+C=180,sin(B+C)=sinA,可得2sinAcosB=sinA,sinA0,2cosB=1,即cosB=,则B=60故选:A【点评】此题考查了同角三角函数基本关系的运用,熟练掌握基本关系是解本题的关键6 【答案】 C【解析】解:模拟程序框图的运行过程,得;该程序运行后输出的是实数对(1,3),(2,9),(3,27),(4,81);这组数对对应的点在函数y=3x的图象上故选:C【点评】本题考查了程序框图的应用问题,是基础题目7 【答案】B【解析】考点:直线方程的形式.【方法点晴】本题主要考查了直线方程的表示形式,对于直线的点斜式方程只能表示斜率存在的直线;直线的斜截式方程只能表示斜率存在的直线;直线的饿两点式方程不能表示和坐标轴平行的直线;直线的截距式方程不能表示与坐标轴平行和过原点的直线,此类问题的解答中熟记各种直线方程的局限性是解答的关键.1118 【答案】B【解析】解:线段AB的中点为,kAB=,垂直平分线的斜率 k=2,线段AB的垂直平分线的方程是 y=2(x2)4x2y5=0,故选B【点评】本题考查两直线垂直的性质,线段的中点坐标公式,以及用直线方程的点斜式求直线方程的求法9 【答案】B 【解析】考点:1、同角三角函数基本关系的运用;2、两角和的正弦函数;3、任意角的三角函数的定义.10【答案】A【解析】考点:线性规划.【方法点晴】本题是一道关于线性规划求最值的题目,采用线性规划的知识进行求解;关键是弄清楚的几何意义直线截距为,作,向可行域内平移,越向上,则的值越大,从而可得当直线直线过点时取最大值,可求得点的坐标可求的最大值,然后由解不等式可求的范围. 11【答案】B【解析】12【答案】C【解析】由三视图可知该几何体是四棱锥,且底面为长,宽的矩形,高为3,所以此四棱锥体积为,故选C.二、填空题13【答案】【解析】试题分析:因为不等式恒成立,所以当时,不等式可化为,不符合题意;当时,应满足,即,解得.1考点:不等式的恒成立问题.14【答案】 【解析】解:对于,BD1面AB1C,动点P的轨迹所在曲线是直线B1C,正确;对于,满足到点A的距离为的点集是球,点P应为平面截球体所得截痕,即轨迹所在曲线为圆,正确;对于,满足条件MAP=MAC1 的点P应为以AM为轴,以AC1 为母线的圆锥,平面BB1C1C是一个与轴AM平行的平面,又点P在BB1C1C所在的平面上,故P点轨迹所在曲线是双曲线一支,错误;对于,P到直线C1D1 的距离,即到点C1的距离与到直线BC的距离比为2:1,动点P的轨迹所在曲线是以C1 为焦点,以直线BC为准线的双曲线,正确;对于,如图建立空间直角坐标系,作PEBC,EFAD,PGCC1,连接PF,设点P坐标为(x,y,0),由|PF|=|PG|,得,即x2y2=1,P点轨迹所在曲线是双曲线,错误故答案为:【点评】本题考查了命题的真假判断与应用,考查了圆锥曲线的定义和方方程,考查了学生的空间想象能力和思维能力,是中档题15【答案】20 【解析】解:(1+x)(x2+)6的展开式中,x3的系数是由(x2+)6的展开式中x3与1的积加上x2与x的积组成;又(x2+)6的展开式中,通项公式为 Tr+1=x123r,令123r=3,解得r=3,满足题意;令123r=2,解得r=,不合题意,舍去;所以展开式中x3的系数是=20故答案为:2016【答案】2 【解析】解:f(x)是定义在2a,3a1上奇函数,定义域关于原点对称,即2a+3a1=0,a=1,函数为奇函数,f(x)=,即b2x1=b+2x,b=1即a+b=2,故答案为:217【答案】6 【解析】解:根据题意可知:f(x)2x是一个固定的数,记为a,则f(a)=6,f(x)2x=a,即f(x)=a+2x,当x=a时,又a+2a=6,a=2,f(x)=2+2x,f(x)+f(x)=2+2x+2+2x=2x+2x+42+4=6,当且仅当x=0时成立,f(x)+f(x)的最小值等于6,故答案为:6【点评】本题考查函数的最值,考查运算求解能力,注意解题方法的积累,属于中档题18【答案】12【解析】考点:分层抽样三、解答题19【答案】 【解析】解:()证明:BCD中,CB=CD,BCD=120,CDB=30,EC=DE,DCE=30,BCE=90,ECBC,又平面ABC平面BCD,平面ABC与平面BCD的交线为BC,EC平面ABC,ECAB()解:取BC的中点O,BE中点F,连结OA,OF,AC=AB,AOBC,平面ABC平面BCD,平面ABC平面BCD=BC,AO平面BCD,O是BC中点,F是BE中点,OFBC,以O为原点,OB为y轴,OA为z轴,建立空间直角坐标系,设DE=2,则A(0,0,1),B(0,0),C(0,0),D(3,2,0),=(0,1),=(3,0),设平面ACD的法向量为=(x,y,z),则,取x=1,得=(1,3),又平面BCD的法向量=(0,0,1),cos=,二面角ACDB的余弦值为【点评】本小题主要考查立体几何的相关知识,具体涉及到线面以及面面的垂直关系、二面角的求法及空间向量在立体几何中的应用本小题对考生的空间想象能力与运算求解能力有较高要求20【答案】(1);(2).【解析】试题分析:(1)当题设给出圆上三点时,求圆的方程,此时设圆的一般方程,将三点代入,求解圆的方程;(2)AB的垂直平分线过圆心,所以圆心的横坐标为,圆心与圆上任一点连线段为半径,根据圆心与半径求圆的标准方程.试题解析:(1)设圆的方程是,则由已知得,解得故圆的方程为.(2)由圆的对称性可知,圆心的横坐标为,故圆心,故圆的半径,故圆的标准方程为.考点:圆的方程21【答案】【解析】(1),.(2分)令,得.当时,当时,所以的单调增区间是,单调减区间是.(5分)若,则,又,由零点存在定理,使,所以在上单调增,在上单调减.又,.故当时,此时在上有两个零点;当时,此时在上只有一个零点. 22【答案】【解析】(1)f(t)=10=102sin(t+),t0,24),t+,故当t+=时,函数取得最大值为10+2=12,当t+=时,函数取得最小值为102=8,故实验室这一天的最大温差为128=4。(2)由题意可得,当f(t)11时,需要降温,由()可得f(t)=102sin(t+),由102sin(t+)11,求得sin(t+),即t+,解得10t18,即在10时到18时,需要降温。23【答案】(1)(2)见解析(3)【解析】试题分析:(1)由题意转化为在区间上恒成立,化简可得一次函数恒成立,根据一次函数性质得不等式,解不等式得实数的取值范围;(2)导函数有
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年新材料行业当前发展现状及增长策略研究报告
- 2025年防护眼镜行业当前发展趋势与投资机遇洞察报告
- 收纳行业知识培训内容课件
- 2025年职业技能(工业废水处理工)专业技术及理论知识考试题库与答案
- 2025年版《手术室护理实践指南》练习题(及答案)
- 2025保密宣传教育月有奖答题试题及答案
- 2025员工三级安全教育考试试题含答案
- 2025年高级美容师理论知识资格考试模拟试题库及答案
- 2025年社会工作者之中级社会综合能力通关考试题库带答案解析
- 2024年服装设计师、制作工专业技能理论知识考试题库(含答案)
- 合作试验协议
- 全国高中生物奥林匹克竞赛试题
- 洁净手术部技术要求
- 配电房安全管理培训
- GB 44263-2024电动汽车传导充电系统安全要求
- QB/T 2660-2024 化妆水(正式版)
- 初中历史八年级下册单元作业设计
- 2024-2030年中国药用安瓿瓶行业现状规模及供需趋势预测报告
- 护理团标解读住院精神疾病患者攻击行为预防
- 护士上半年护士考试题库
- 【年产100万瓶漱口水工艺设计及物料衡算9400字(论文)】
评论
0/150
提交评论