西夏区第二中学2018-2019学年高二上学期数学期末模拟试卷含解析_第1页
西夏区第二中学2018-2019学年高二上学期数学期末模拟试卷含解析_第2页
西夏区第二中学2018-2019学年高二上学期数学期末模拟试卷含解析_第3页
西夏区第二中学2018-2019学年高二上学期数学期末模拟试卷含解析_第4页
西夏区第二中学2018-2019学年高二上学期数学期末模拟试卷含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

西夏区第二中学2018-2019学年高二上学期数学期末模拟试卷含解析班级_ 座号_ 姓名_ 分数_一、选择题1 如果一个几何体的三视图如图所示,主视图与左视图是边长为2的正三角形、俯视图轮廓为正方形,(单位:cm),则此几何体的表面积是( )A8cm2B cm2C12 cm2D cm22 记集合T=0,1,2,3,4,5,6,7,8,9,M=,将M中的元素按从大到小排列,则第2013个数是( )ABCD3 设0ab且a+b=1,则下列四数中最大的是( )Aa2+b2B2abCaD4 如图,在长方形ABCD中,AB=,BC=1,E为线段DC上一动点,现将AED沿AE折起,使点D在面ABC上的射影K在直线AE上,当E从D运动到C,则K所形成轨迹的长度为( )ABCD5 是平面内不共线的两向量,已知,若三点共线,则的值是( )A1 B2 C-1 D-26 已知实数满足不等式组,若目标函数取得最大值时有唯一的最优解,则实数的取值范围是( )A B C D【命题意图】本题考查了线性规划知识,突出了对线性目标函数在给定可行域上最值的探讨,该题属于逆向问题,重点把握好作图的准确性及几何意义的转化,难度中等.7 棱长为2的正方体被一个平面截去一部分后所得的几何体的三视图如图所示,则该几何体的表面积为( )AB18CD8 数列an满足an+2=2an+1an,且a2014,a2016是函数f(x)=+6x1的极值点,则log2(a2000+a2012+a2018+a2030)的值是( )A2B3C4D59 已知函数f(x)满足f(x)=f(x),且当x(,)时,f(x)=ex+sinx,则( )ABCD10函数y=2|x|的图象是( )ABCD11若复数在复平面内对应的点关于轴对称,且,则复数在复平面内对应的点在( )A第一象限 B第二象限 C第三象限 D第四象限【命题意图】本题考查复数的几何意义、代数运算等基础知识,意在考查转化思想与计算能力12设分别是中,所对边的边长,则直线与的位置关系是( )A平行 B 重合 C 垂直 D相交但不垂直二、填空题13已知过双曲线的右焦点的直线交双曲线于两点,连结,若,且,则双曲线的离心率为( )A B C D【命题意图】本题考查双曲线定义与几何性质,意要考查逻辑思维能力、运算求解能力,以及考查数形结合思想、方程思想、转化思想14已知点M(x,y)满足,当a0,b0时,若ax+by的最大值为12,则+的最小值是15对于|q|1(q为公比)的无穷等比数列an(即项数是无穷项),我们定义Sn(其中Sn是数列an的前n项的和)为它的各项的和,记为S,即S=Sn=,则循环小数0. 的分数形式是16将全体正整数排成一个三角形数阵:按照以上排列的规律,第n行(n3)从左向右的第3个数为17已知正方体ABCDA1B1C1D1的一个面A1B1C1D1在半径为的半球底面上,A、B、C、D四个顶点都在此半球面上,则正方体ABCDA1B1C1D1的体积为18x为实数,x表示不超过x的最大整数,则函数f(x)=xx的最小正周期是三、解答题19(本题满分13分)已知圆的圆心在坐标原点,且与直线:相切,设点为圆上一动点,轴于点,且动点满足,设动点的轨迹为曲线.(1)求曲线的方程;(2)若动直线:与曲线有且仅有一个公共点,过,两点分别作,垂足分别为,且记为点到直线的距离,为点到直线的距离,为点到点的距离,试探索是否存在最值?若存在,请求出最值.20(本题满分12分)已知向量,记函数.(1)求函数的单调递增区间;(2)在中,角的对边分别为且满足,求的取值范围.【命题意图】本题考查了向量的内积运算,三角函数的化简及性质的探讨,并与解三角形知识相互交汇,对基本运算能力、逻辑推理能力有一定要求,但突出了基础知识的考查,仍属于容易题.21等比数列an的各项均为正数,且2a1+3a2=1,a32=9a2a6,()求数列an的通项公式;()设bn=log3a1+log3a2+log3an,求数列的前n项和 22(本小题满分13分)已知函数,()讨论的单调性;()证明:当时,有唯一的零点,且23(本小题满分12分)已知平面向量,.(1)若,求;(2)若与夹角为锐角,求的取值范围.24如图,在四棱锥PABCD中,底面ABCD为等腰梯形,ADBC,PA=AB=BC=CD=2,PD=2,PAPD,Q为PD的中点()证明:CQ平面PAB;()若平面PAD底面ABCD,求直线PD与平面AQC所成角的正弦值西夏区第二中学2018-2019学年高二上学期数学期末模拟试卷含解析(参考答案)一、选择题1 【答案】C【解析】解:由已知可得:该几何体是一个四棱锥,侧高和底面的棱长均为2,故此几何体的表面积S=22+422=12cm2,故选:C【点评】本题考查的知识点是棱柱、棱锥、棱台的体积和表面积,空间几何体的三视图,根据已知判断几何体的形状是解答的关键2 【答案】 A【解析】进行简单的合情推理【专题】规律型;探究型【分析】将M中的元素按从大到小排列,求第2013个数所对应的ai,首先要搞清楚,M集合中元素的特征,同样要分析求第2011个数所对应的十进制数,并根据十进制转换为八进行的方法,将它转换为八进制数,即得答案【解答】因为=(a1103+a2102+a310+a4),括号内表示的10进制数,其最大值为 9999;从大到小排列,第2013个数为99992013+1=7987所以a1=7,a2=9,a3=8,a4=7则第2013个数是故选A【点评】对十进制的排序,关键是要找到对应的数是几,如果从大到小排序,要找到最大数(即第一个数),再找出第n个数对应的十进制的数即可3 【答案】A【解析】解:0ab且a+b=12b12aba=a(2b1)0,即2aba又a2+b22ab=(ab)20a2+b22ab最大的一个数为a2+b2故选A4 【答案】 D【解析】解:由题意,将AED沿AE折起,使平面AED平面ABC,在平面AED内过点D作DKAE,K为垂足,由翻折的特征知,连接DK,则DKA=90,故K点的轨迹是以AD为直径的圆上一弧,根据长方形知圆半径是,如图当E与C重合时,AK=,取O为AD的中点,得到OAK是正三角形故K0A=,K0D=,其所对的弧长为=,故选:D5 【答案】B【解析】考点:向量共线定理6 【答案】C【解析】画出可行域如图所示,要使目标函数取得最大值时有唯一的最优解,则需直线过点时截距最大,即最大,此时即可.7 【答案】D【解析】解:由三视图可知正方体边长为2,截去部分为三棱锥,作出几何体的直观图如图所示:故该几何体的表面积为:322+3()+=,故选:D8 【答案】C【解析】解:函数f(x)=+6x1,可得f(x)=x28x+6,a2014,a2016是函数f(x)=+6x1的极值点,a2014,a2016是方程x28x+6=0的两实数根,则a2014+a2016=8数列an中,满足an+2=2an+1an,可知an为等差数列,a2014+a2016=a2000+a2030,即a2000+a2012+a2018+a2030=16,从而log2(a2000+a2012+a2018+a2030)=log216=4故选:C【点评】熟练掌握利用导数研究函数的极值、等差数列的性质及其对数的运算法则是解题的关键9 【答案】D【解析】解:由f(x)=f(x)知,f()=f()=f(),当x(,)时,f(x)=ex+sinx为增函数,f()f()f(),f()f()f(),故选:D10【答案】B【解析】解:f(x)=2|x|=2|x|=f(x)y=2|x|是偶函数,又函数y=2|x|在0,+)上单调递增,故C错误且当x=0时,y=1;x=1时,y=2,故A,D错误故选B【点评】本题考查的知识点是指数函数的图象变换,其中根据函数的解析式,分析出函数的性质,进而得到函数的形状是解答本题的关键11【答案】B【解析】12【答案】C【解析】试题分析:由直线与,则,所以两直线是垂直的,故选C. 1考点:两条直线的位置关系.二、填空题13【答案】B【解析】14【答案】4 【解析】解:画出满足条件的平面区域,如图示:,由,解得:A(3,4),显然直线z=ax+by过A(3,4)时z取到最大值12,此时:3a+4b=12,即+=1,+=(+)(+)=2+2+2=4,当且仅当3a=4b时“=”成立,故答案为:4【点评】本题考查了简单的线性规划,考查了利用基本不等式求最值,解答此题的关键是对“1”的灵活运用,是基础题15【答案】 【解析】解:0. = + +=,故答案为:【点评】本题考查数列的极限,考查学生的计算能力,比较基础16【答案】3+ 【解析】解:本小题考查归纳推理和等差数列求和公式前n1行共有正整数1+2+(n1)个,即个,因此第n行第3个数是全体正整数中第3+个,即为3+故答案为:3+17【答案】2 【解析】解:如图所示,连接A1C1,B1D1,相交于点O则点O为球心,OA=设正方体的边长为x,则A1O=x在RtOAA1中,由勾股定理可得: +x2=,解得x=正方体ABCDA1B1C1D1的体积V=2故答案为:218【答案】1,)(9,25 【解析】解:集合,得 (ax5)(x2a)0,当a=0时,显然不成立,当a0时,原不等式可化为,若时,只需满足,解得;若,只需满足,解得9a25,当a0时,不符合条件,综上,故答案为1,)(9,25【点评】本题重点考查分式不等式的解法,不等式的性质及其应用和分类讨论思想的灵活运用,属于中档题三、解答题19【答案】【解析】【命题意图】本题综合考查了圆的标准方程、向量的坐标运算,轨迹的求法,直线与椭圆位置关系;本题突出对运算能力、化归转化能力的考查,还要注意对特殊情况的考虑,本题难度大.(2)由(1)中知曲线是椭圆,将直线:代入椭圆的方程中,得由直线与椭圆有且仅有一个公共点知,整理得 7分且,当时,设直线的倾斜角为,则,即 10分 当时,11分当时,四边形为矩形,此时, 12分综上、可知,存在最大值,最大值为 13分20【答案】【解析】(1)由题意知,3分令,则可得,.的单调递增区间为().5分21【答案】【解析】解:()设数列an的公比为q,由a32=9a2a6得a32=9a42,所以q2=由条件可知各项均为正数,故q=由2a1+3a2=1得2a1+3a1q=1,所以a1=故数列an的通项式为an=()bn=+=(1+2+n)=,故=2()则+=2=,所以数列的前n项和为【点评】此题考查学生灵活运用等比数列的通项公式化简求值,掌握对数的运算性质及等差数列的前n项和的公式,会进行数列的求和运算,是一道中档题22【答案】(本小题满分13分)解:(), (1分)当时,解得或,解得,的递增区间为和,的递减区间为 (4分)当时,的递增区间为,递减区间为 (5分)当时,解得,解得或的递增区间为,的递减区间为和 (7分)()当时,由()知上递减,在上递增,在上递减,在没有零点 (9分),在上递减,在上,存在唯一的,使得且 (12分)综上所述,当时,有唯一的零点,且 (13分)23【答案】(1)2或;(2)【解析】试题分析:(1)本题可由两向量平行求得参数,由坐标运算可得两向量的模,由于有两解,因此模有两个值;(2)两向量的夹角为锐角的充要条件是且不共线,由此可得范围试题解析:(1)由,得或,当时,当时,.(2)与夹角为锐角,又因为时,所以的取值范围是.考点:向量平行的坐标运算,向量的模与数量积【名师点睛】由向量的数量积可得向量的夹角公式,当为锐角时,但当时,可能为锐角,也可能为0(此时两向量同向),因此两向量夹角为锐角的充要条件是且不同向,同样两向量夹角为钝角的充要条件是且不反向24【答案】 【解析】()证明:取PA的中点N,连接QN,BNQ,N是PD,PA的中点,QNAD,且QN=ADPA=2,PD=2,PAPD,AD=4,BC=AD又BCAD,QNBC,且QN=BC,四边形BCQN为平行四边形,BNCQ又BN平面PAB,且CQ平面PAB,CQ平面PAB()解:取AD的中点M,连接B

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论