




已阅读5页,还剩14页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
晋安区高级中学2018-2019学年上学期高二数学12月月考试题含解析班级_ 座号_ 姓名_ 分数_一、选择题1 已知条件p:x2+x20,条件q:xa,若q是p的充分不必要条件,则a的取值范围可以是( )Aa1Ba1Ca1Da32 设m,n表示两条不同的直线,、表示两个不同的平面,则下列命题中不正确的是( )Am,m,则Bmn,m,则nCm,n,则mnDm,=n,则mn3 487被7除的余数为a(0a7),则展开式中x3的系数为( )A4320B4320C20D204 已知ABC是锐角三角形,则点P(cosCsinA,sinAcosB)在( )A第一象限B第二象限C第三象限D第四象限5 已知回归直线的斜率的估计值为1.23,样本点的中心为(4,5),则回归直线方程为( )ABCD =0.08x+1.236 方程(x24)2+(y24)2=0表示的图形是( )A两个点B四个点C两条直线D四条直线7 已知A=4,2a1,a2,B=a5,1a,9,且AB=9,则a的值是( )Aa=3Ba=3Ca=3Da=5或a=38 如图,在正四棱锥SABCD中,E,M,N分别是BC,CD,SC的中点,动点P在线段MN上运动时,下列四个结论:EPBD;EPAC;EP面SAC;EP面SBD中恒成立的为( )ABCD9 某市重点中学奥数培训班共有14人,分为两个小组,在一次阶段考试中两个小组成绩的茎叶图如图所示,其中甲组学生成绩的平均数是88,乙组学生成绩的中位数是89,则的值是( )A10B11C12D13【命题意图】本题考查样本平均数、中位数、茎叶图等基础知识,意在考查识图能力和计算能力10已知函数,关于的方程()有3个相异的实数根,则的取值范围是( )A B C D【命题意图】本题考查函数和方程、导数的应用等基础知识,意在考查数形结合思想、综合分析问题解决问题的能力11已知函数(),若数列满足,数列的前项和为,则( )A. B. C. D.【命题意图】本题考查数列求和等基础知识,意在考查分类讨论的数学思想与运算求解能力.12函数f(x)=2x的零点个数为( )A0B1C2D3二、填空题13已知点M(x,y)满足,当a0,b0时,若ax+by的最大值为12,则+的最小值是14若与共线,则y=15已知|=1,|=2,与的夹角为,那么|+|=16如图为长方体积木块堆成的几何体的三视图,此几何体共由块木块堆成17已知函数,且,则,的大小关系是 18已知等差数列an中,a3=,则cos(a1+a2+a6)=三、解答题19已知抛物线C:x2=2py(p0),抛物线上一点Q(m,)到焦点的距离为1()求抛物线C的方程()设过点M(0,2)的直线l与抛物线C交于A,B两点,且A点的横坐标为n(nN*)()记AOB的面积为f(n),求f(n)的表达式()探究是否存在不同的点A,使对应不同的AOB的面积相等?若存在,求点A点的坐标;若不存在,请说明理由20【常州市2018届高三上武进区高中数学期中】已知函数,若曲线在点处的切线经过点,求实数的值;若函数在区间上单调,求实数的取值范围;设,若对,使得成立,求整数的最小值21已知函数f(x)的定义域为x|xk,kZ,且对定义域内的任意x,y都有f(xy)=成立,且f(1)=1,当0x2时,f(x)0(1)证明:函数f(x)是奇函数;(2)试求f(2),f(3)的值,并求出函数f(x)在2,3上的最值22(本小题满分13分)设,数列满足:,()若为方程的两个不相等的实根,证明:数列为等比数列;()证明:存在实数,使得对, )23如图,O的半径为6,线段AB与相交于点C、D,AC=4,BOD=A,OB与O相交于点(1)求BD长;(2)当CEOD时,求证:AO=AD 24已知函数f(x)=lnxa(1),aR()求f(x)的单调区间;()若f(x)的最小值为0(i)求实数a的值;(ii)已知数列an满足:a1=1,an+1=f(an)+2,记x表示不大于x的最大整数,求证:n1时an=2 晋安区高级中学2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1 【答案】A【解析】解:条件p:x2+x20,条件q:x2或x1q是p的充分不必要条件a1 故选A2 【答案】D【解析】解:A选项中命题是真命题,m,m,可以推出;B选项中命题是真命题,mn,m可得出n;C选项中命题是真命题,m,n,利用线面垂直的性质得到nm;D选项中命题是假命题,因为无法用线面平行的性质定理判断两直线平行故选D【点评】本题考查了空间线面平行和线面垂直的性质定理和判定定理的运用,关键是熟练有关的定理3 【答案】B 解析:解:487=(491)7=+1,487被7除的余数为a(0a7),a=6,展开式的通项为Tr+1=,令63r=3,可得r=3,展开式中x3的系数为=4320,故选:B.4 【答案】B【解析】解:ABC是锐角三角形,A+B,AB,sinAsin(B)=cosB,sinAcosB0,同理可得sinAcosC0,点P在第二象限故选:B5 【答案】C【解析】解:法一:由回归直线的斜率的估计值为1.23,可排除D由线性回归直线方程样本点的中心为(4,5),将x=4分别代入A、B、C,其值依次为8.92、9.92、5,排除A、B法二:因为回归直线方程一定过样本中心点,将样本点的中心(4,5)分别代入各个选项,只有C满足,故选C【点评】本题提供的两种方法,其实原理都是一样的,都是运用了样本中心点的坐标满足回归直线方程6 【答案】B【解析】解:方程(x24)2+(y24)2=0则x24=0并且y24=0,即,解得:,得到4个点故选:B【点评】本题考查二元二次方程表示圆的条件,方程的应用,考查计算能力7 【答案】B【解析】解:A=4,2a1,a2,B=a5,1a,9,且AB=9,2a1=9或a2=9,当2a1=9时,a=5,AB=4,9,不符合题意;当a2=9时,a=3,若a=3,集合B违背互异性;a=3故选:B【点评】本题考查了交集及其运算,考查了集合中元素的特性,是基础题8 【答案】 A【解析】解:如图所示,连接AC、BD相交于点O,连接EM,EN在中:由异面直线的定义可知:EP与BD是异面直线,不可能EPBD,因此不正确;在中:由正四棱锥SABCD,可得SO底面ABCD,ACBD,SOACSOBD=O,AC平面SBD,E,M,N分别是BC,CD,SC的中点,EMBD,MNSD,而EMMN=M,平面EMN平面SBD,AC平面EMN,ACEP故正确在中:由同理可得:EM平面SAC,若EP平面SAC,则EPEM,与EPEM=E相矛盾,因此当P与M不重合时,EP与平面SAC不垂直即不正确在中:由可知平面EMN平面SBD,EP平面SBD,因此正确故选:A【点评】本题考查命题真假的判断,是中档题,解题时要认真审题,注意空间思维能力的培养9 【答案】C【解析】由题意,得甲组中,解得乙组中,所以,所以,故选C10【答案】D第卷(共90分)11【答案】A. 【解析】12【答案】C【解析】解:易知函数的定义域为x|x1,0,函数在(,1)和(1,+)上都是增函数,又0,f(0)=1(2)=30,故函数在区间(4,0)上有一零点;又f(2)=44=0,函数在(1,+)上有一零点0,综上可得函数有两个零点故选:C【点评】本题考查函数零点的判断解题关键是掌握函数零点的判断方法利用函数单调性确定在相应区间的零点的唯一性属于中档题二、填空题13【答案】4 【解析】解:画出满足条件的平面区域,如图示:,由,解得:A(3,4),显然直线z=ax+by过A(3,4)时z取到最大值12,此时:3a+4b=12,即+=1,+=(+)(+)=2+2+2=4,当且仅当3a=4b时“=”成立,故答案为:4【点评】本题考查了简单的线性规划,考查了利用基本不等式求最值,解答此题的关键是对“1”的灵活运用,是基础题14【答案】6 【解析】解:若与共线,则2y3(4)=0解得y=6故答案为:6【点评】本题考查的知识点是平面向量共线(平行)的坐标表示,其中根据“两个向量若平行,交叉相乘差为零”的原则,构造关于y的方程,是解答本题的关键15【答案】 【解析】解:|=1,|=2,与的夹角为,=1=1|+|=故答案为:【点评】本题考查了数量积的定义及其运算性质,考查了推理能力与计算能力,属于中档题16【答案】4 【解析】解:由三视图可以看出此几何体由两排两列,前排有一个方块,后排左面一列有两个木块右面一列有一个,故后排有三个,故此几何体共有4个木块组成故答案为:417【答案】111.Com【解析】考点:不等式,比较大小【思路点晴】本题主要考查二次函数与一元二次方程及一元二次不等式三者的综合应用. 分析二次函数的图象,主要有两个要点:一个是看二次项系数的符号,它确定二次函数图象的开口方向;二是看对称轴和最值,它确定二次函数的具体位置对于函数图象判断类似题要会根据图象上的一些特殊点进行判断,如函数图象与正半轴的交点,函数图象的最高点与最低点等18【答案】 【解析】解:数列an为等差数列,且a3=,a1+a2+a6=3a1+6d=3(a1+2d)=3a3=3=,cos(a1+a2+a6)=cos=故答案是:三、解答题19【答案】 【解析】解:()依题意得|QF|=yQ+=+=1,解得p=1,抛物线C的方程为x2=2y;()()直线l与抛物线C交于A、B两点,直线l的斜率存在,设A(x1,y1),B(x2,y2),直线l的方程为:y=kx+2,联立方程组,化简得:x22kx4=0,此时=(2k)241(4)=4(k2+4)0,由韦达定理,得:x1+x2=2k,x1x2=4,SAOB=|OM|x1x2|=2=2 (*)又A点横坐标为n,点A坐标为A(n,),又直线过点M(0,2),故k=,将上式代入(*)式,可得:f(n)=2=2=2=n+(nN*);()结论:当A点坐标为(1,)或(4,8)时,对应不同的AOB的面积相等理由如下:设存在不同的点Am(m,),An(n,)(mn,m、nN*),使对应不同的AOB的面积相等,则f(m)=f(n),即m+=n+,化简得:mn=,又mn,即mn0,1=,即mn=4,解得m=1,n=4或m=4,n=1,此时A点坐标为(1,),(4,8)【点评】本题考查抛物线的定义及其标准方程、直线与抛物线的位置关系、函数的性质等基础知识,考查运算求解能力、抽象概括能力、推理论证能力,考查函数与方程的思想、数形结合思想、化归与转化思想,注意解题方法的积累,属于中档题20【答案】【解析】试题分析:(1)根据题意,对函数求导,由导数的几何意义分析可得曲线 在点处的切线方程,代入点,计算可得答案;(2)由函数的导数与函数单调性的关系,分函数在(上单调增与单调减两种情况讨论,综合即可得答案;(3)由题意得, 分析可得必有 ,对求导,对分类讨论即可得答案试题解析:,若函数在区间上单调递增,则在恒成立,得; 若函数在区间上单调递减,则在恒成立,得, 综上,实数的取值范围为;由题意得,即,由,当时,则不合题意;当时,由,得或(舍去),当时,单调递减,当时,单调递增,即,整理得, 设,单调递增,为偶数,又,故整数的最小值为。21【答案】 【解析】(1)证明:函数f(x)的定义域为x|xk,kZ,关于原点对称又f(xy)=,所以f(x)=f(1x)1= = = = = =,故函数f(x)奇函数(2)令x=1,y=1,则f(2)=f1(1)= =,令x=1,y=2,则f(3)=f1(2)= = =,f(x2)=,f(x4)=,则函数的周期是4先证明f(x)在2,3上单调递减,先证明当2x3时,f(x)0,设2x3,则0x21,则f(x2)=,即f(x)=0,设2x1x23,则f(x1)0,f(x2)0,f(x2x1)0,则f(x1)f(x2)=,f(x1)f(x2),即函数f(x)在2,3上为减函数,则函数f(x)在2,3上的最大值为f(2)=0,最小值为f(3)=1【点评】本题主要考查了函数奇偶性的判断,以及函数的最值及其几何意义等有关知识,综合性较强,难度较大22【答案】 【解析】解:证明:, (3分),数列为等比数列 (4分)()证明:设,则由及得,在上递减,(8分)下面用数学归纳法证明:当时,当时,命题成立 (9分)假设当时命题成立,即,那么由在上递减得由得,当时命题也成立, (12分)由知,对一切命题成立,即存在实数,使得对,.23【答案】 【解析】解:(1)OC=OD,OCD=ODC,OAC=ODBBOD=A,OBDAOC,OC=OD=6,AC=4,BD=9(2)证明:OC=OE,CEODCOD=BOD=AAOD=180AODC=180CODOCD=ADOAD=AO 【点评】本题考查三角形相似,角的求法,考查推理与证明,距离的求法 24【答案】 【解析】解:()函数f(x)的定义域为(0,+),且f(x)=当a0时,f(x)0,所以f(x)在区间(0,+)内单调递增;当a0时,由f(x)0,解得xa;由f(x)0,解得0xa所以f(x)的单调递增区间为(a,+),单调递减区间为(0,a)综上述:a0时,f(x)的单调
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
评论
0/150
提交评论