




已阅读5页,还剩13页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
遵义县第二中学校2018-2019学年高二上学期数学期末模拟试卷含解析班级_ 座号_ 姓名_ 分数_一、选择题1 若函数f(x)=a(xx3)的递减区间为(,),则a的取值范围是( )Aa0B1a0Ca1D0a12 设x,yR,且满足,则x+y=( )A1B2C3D43 在ABC中,sinB+sin(AB)=sinC是sinA=的( )A充分非必要条件B必要非充分条件C充要条件D既不充分也非必要条件4 如图在圆中,是圆互相垂直的两条直径,现分别以,为直径作四个圆,在圆内随机取一点,则此点取自阴影部分的概率是( )DABCOA B C D【命题意图】本题考查几何概型概率的求法,借助圆这个载体,突出了几何概型的基本运算能力,因用到圆的几何性质及面积的割补思想,属于中等难度5 P是双曲线=1(a0,b0)右支上一点,F1、F2分别是左、右焦点,且焦距为2c,则PF1F2的内切圆圆心的横坐标为( )AaBbCcDa+bc6 下列函数中,为奇函数的是( )Ay=x+1By=x2Cy=2xDy=x|x|7 函数f(x)=lnx的零点所在的大致区间是( )A(1,2)B(2,3)C(1,)D(e,+)8 函数y=sin(2x+)图象的一条对称轴方程为( )Ax=Bx=Cx=Dx=9 已知函数f(x)=lnx+2x6,则它的零点所在的区间为( )A(0,1)B(1,2)C(2,3)D(3,4)10函数y=f(x)是函数y=f(x)的导函数,且函数y=f(x)在点p(x0,f(x0)处的切线为l:y=g(x)=f(x0)(xx0)+f(x0),F(x)=f(x)g(x),如果函数y=f(x)在区间a,b上的图象如图所示,且ax0b,那么( )AF(x0)=0,x=x0是F(x)的极大值点BF(x0)=0,x=x0是F(x)的极小值点CF(x0)0,x=x0不是F(x)极值点DF(x0)0,x=x0是F(x)极值点11已知函数,其中,为自然对数的底数当时,函数的图象不在直线的下方,则实数的取值范围( )ABCD【命题意图】本题考查函数图象与性质、利用导数研究函数的单调性、零点存在性定理,意在考查逻辑思维能力、等价转化能力、运算求解能力,以及构造思想、分类讨论思想的应用12在复平面内,复数Z=+i2015对应的点位于( )A第四象限B第三象限C第二象限D第一象限二、填空题13(sinx+1)dx的值为14已知平面向量,的夹角为,向量,的夹角为,则与的夹角为_,的最大值为 【命题意图】本题考查平面向量数量积综合运用等基础知识,意在考查数形结合的数学思想与运算求解能力.15若函数的定义域为,则函数的定义域是 16已知z是复数,且|z|=1,则|z3+4i|的最大值为17已知sin+cos=,且,则sincos的值为18函数在点处切线的斜率为 三、解答题19如图,平面ABB1A1为圆柱OO1的轴截面,点C为底面圆周上异于A,B的任意一点()求证:BC平面A1AC;()若D为AC的中点,求证:A1D平面O1BC20某车间为了规定工时定额,需要确定加工零件所花费的时间,为此作了四次试验,得到的数据如下:零件的个数x(个)2345加工的时间y(小时)2.5344.5(1)在给定的坐标系中画出表中数据的散点图;(2)求出y关于x的线性回归方程=x+,并在坐标系中画出回归直线;(3)试预测加工10个零件需要多少时间?参考公式:回归直线=bx+a,其中b=,a=b21已知数列an和bn满足a1a2a3an=2(nN*),若an为等比数列,且a1=2,b3=3+b2(1)求an和bn;(2)设cn=(nN*),记数列cn的前n项和为Sn,求Sn22求下列函数的定义域,并用区间表示其结果(1)y=+;(2)y=23(本小题满分12分)如图,多面体中,四边形ABCD为菱形,且,.(1)求证:;(2)若,求三棱锥的体积.24(本小题满分12分)如图,在四棱锥中,底面为菱形,分别是棱的中点,且平面.(1)求证:平面;(2)求证:平面平面.遵义县第二中学校2018-2019学年高二上学期数学期末模拟试卷含解析(参考答案)一、选择题1 【答案】A【解析】解:函数f(x)=a(xx3)的递减区间为(,)f(x)0,x(,)恒成立即:a(13x2)0,x(,)恒成立13x20成立a0故选A【点评】本题主要考查函数单调性的应用,一般来讲已知单调性,则往往转化为恒成立问题去解决2 【答案】D【解析】解:(x2)3+2x+sin(x2)=2,(x2)3+2(x2)+sin(x2)=24=2,(y2)3+2y+sin(y2)=6,(y2)3+2(y2)+sin(y2)=64=2,设f(t)=t3+2t+sint,则f(t)为奇函数,且f(t)=3t2+2+cost0,即函数f(t)单调递增由题意可知f(x2)=2,f(y2)=2,即f(x2)+f(y2)=22=0,即f(x2)=f(y2)=f(2y),函数f(t)单调递增x2=2y,即x+y=4,故选:D【点评】本题主要考查函数奇偶性的应用,利用条件构造函数f(t)是解决本题的关键,综合考查了函数的性质3 【答案】A【解析】解:sinB+sin(AB)=sinC=sin(A+B),sinB+sinAcosBcosAsinB=sinAcosB+cosAsinB,sinB=2cosAsinB,sinB0,cosA=,A=,sinA=,当sinA=,A=或A=,故在ABC中,sinB+sin(AB)=sinC是sinA=的充分非必要条件,故选:A4 【答案】【解析】设圆的半径为,根据图形的对称性,可以选择在扇形中研究问题,过两个半圆的交点分别向,作垂线,则此时构成一个以为边长的正方形,则这个正方形内的阴影部分面积为,扇形的面积为,所求概率为5 【答案】A【解析】解:如图设切点分别为M,N,Q,则PF1F2的内切圆的圆心的横坐标与Q横坐标相同由双曲线的定义,PF1PF2=2a由圆的切线性质PF1PF2=FIMF2N=F1QF2Q=2a,F1Q+F2Q=F1F2=2c,F2Q=ca,OQ=a,Q横坐标为a故选A【点评】本题巧妙地借助于圆的切线的性质,强调了双曲线的定义6 【答案】D【解析】解:由于y=x+1为非奇非偶函数,故排除A;由于y=x2为偶函数,故排除B;由于y=2x为非奇非偶函数,故排除C;由于y=x|x|是奇函数,满足条件,故选:D【点评】本题主要考查函数的奇偶性的判断,属于基础题7 【答案】B【解析】解:函数的定义域为:(0,+),有函数在定义域上是递增函数,所以函数只有唯一一个零点又f(2)ln210,f(3)=ln30f(2)f(3)0,函数f(x)=lnx的零点所在的大致区间是(2,3)故选:B8 【答案】A【解析】解:对于函数y=sin(2x+),令2x+=k+,kz,求得x=,可得它的图象的对称轴方程为x=,kz,故选:A【点评】本题主要考查正弦函数的图象的对称性,属于基础题9 【答案】C【解析】解:易知函数f(x)=lnx+2x6,在定义域R+上单调递增因为当x0时,f(x);f(1)=40;f(2)=ln220;f(3)=ln30;f(4)=ln4+20可见f(2)f(3)0,故函数在(2,3)上有且只有一个零点故选C10【答案】 B【解析】解:F(x)=f(x)g(x)=f(x)f(x0)(xx0)f(x0),F(x)=f(x)f(x0)F(x0)=0,又由ax0b,得出当axx0时,f(x)f(x0),F(x)0,当x0xb时,f(x)f(x0),F(x)0,x=x0是F(x)的极小值点故选B【点评】本题主要考查函数的极值与其导函数的关系,即当函数取到极值时导函数一定等于0,反之当导函数等于0时还要判断原函数的单调性才能确定是否有极值11【答案】B【解析】由题意设,且在时恒成立,而令,则,所以在上递增,所以当时,在上递增,符合题意;当时,在上递减,与题意不合;当时,为一个递增函数,而,由零点存在性定理,必存在一个零点,使得,当时,从而在上单调递减,从而,与题意不合,综上所述:的取值范围为,故选B 12【答案】A【解析】解:复数Z=+i2015=i=i=复数对应点的坐标(),在第四象限故选:A【点评】本题考查复数的代数形式的混合运算,复数的几何意义,基本知识的考查二、填空题13【答案】2 【解析】解:所求的值为(xcosx)|11=(1cos1)(1cos(1)=2cos1+cos1=2故答案为:214【答案】,. 【解析】15【答案】【解析】试题分析:依题意得.考点:抽象函数定义域16【答案】6 【解析】解:|z|=1,|z3+4i|=|z(34i)|z|+|34i|=1+=1+5=6,|z3+4i|的最大值为6,故答案为:6【点评】本题考查复数求模,着重考查复数模的运算性质,属于基础题17【答案】 【解析】解:sin+cos=,sin2+2sincos+cos2=,2sincos=1=,且sincos,sincos=故答案为:18【答案】【解析】试题分析:考点:导数几何意义【思路点睛】(1)求曲线的切线要注意“过点P的切线”与“在点P处的切线”的差异,过点P的切线中,点P不一定是切点,点P也不一定在已知曲线上,而在点P处的切线,必以点P为切点.(2)利用导数的几何意义解题,主要是利用导数、切点坐标、切线斜率之间的关系来进行转化.以平行、垂直直线斜率间的关系为载体求参数的值,则要求掌握平行、垂直与斜率之间的关系,进而和导数联系起来求解.三、解答题19【答案】 【解析】证明:()因为AB为圆O的直径,点C为圆O上的任意一点BCAC 又圆柱OO1中,AA1底面圆O,AA1BC,即BCAA1 而AA1AC=ABC平面A1AC ()取BC中点E,连结DE、O1E,D为AC的中点ABC中,DEAB,且DE=AB 又圆柱OO1中,A1O1AB,且DEA1O1,DE=A1O1A1DEO1为平行四边形 A1DEO1 而A1D平面O1BC,EO1平面O1BCA1D平面O1BC 【点评】本题主要考查直线与直线、直线与平面、平面与平面的位置关系;考查学生的空间想象能力及推理论证能力20【答案】 【解析】解:(1)作出散点图如下:(3分)(2)=(2+3+4+5)=3.5, =(2.5+3+4+4.5)=3.5,(5分)=54, xiyi=52.5b=0.7,a=3.50.73.5=1.05,所求线性回归方程为:y=0.7x+1.05(10分)(3)当x=10代入回归直线方程,得y=0.710+1.05=8.05(小时)加工10个零件大约需要8.05个小时(12分)【点评】本题考查线性回归方程的求法和应用,考查学生的计算能力,属于中档题21【答案】 【解析】解:(1)设等比数列an的公比为q,数列an和bn满足a1a2a3an=2(nN*),a1=2,b1=1, =2q0, =2q2,又b3=3+b223=2q2,解得q=2an=2n=a1a2a3an=2222n=,(2)cn=,数列cn的前n项和为Sn=+=2=2+=1【点评】本题考查了等差数列与等比数列的通项公式及其前n项和公式、递推式的应用、“裂项求和”,考查了推理能力与计算能力,属于中档题22【答案】 【解析】解:(1)y=+,解得x2且x2且x3,函数y的定义域是(2,3)(3,+);(2)y=,解得x4且x1且x3,函数y的定义域是(,1)(1,3)(3,423【答案】【解析】【命题意图】本小题主要考查空间直线与直线、直线与平面的位置关系及几何体的体积等基础知识,考查空间想象能力、推理论证能力、运算求解能力,考查化归与转化思想等(2)在中,24【答案】(1)详见解析;(2)详见解析.【解析】试题分析:(1)根据线面平行的判定定理,可先证明PQ与平面内的直线平行,则线面平行,所以取中点,连结,可证明,那就满足了线面平行的判定定理了;(2)要证明面面垂直,可先证明线面垂直,根据所给的条件证明平面,即平面平面.试题解析:证明:(1)取中点,连结.分别是棱的中点,且.在菱形中,是的中点,且,即且.为平行四边形,则.平面,平面,平面.考点:1.线线,线面平行关系;2
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年事业单位工勤技能-江西-江西工程测量工五级(初级工)历年参考题库含答案解析(5套)
- 2025年事业单位工勤技能-广西-广西放射技术员二级(技师)历年参考题库典型考点含答案解析
- 2025年事业单位工勤技能-广西-广西土建施工人员四级(中级工)历年参考题库典型考点含答案解析
- 2025年事业单位工勤技能-广东-广东防疫员一级(高级技师)历年参考题库含答案解析
- 2025年事业单位工勤技能-广东-广东汽车驾驶与维修员三级(高级工)历年参考题库含答案解析
- 2025年事业单位工勤技能-广东-广东地图绘制员一级(高级技师)历年参考题库典型考点含答案解析
- 2020-2025年二级建造师之二建建筑工程实务通关考试题库带答案解析
- 2025年银行金融类-金融考试-银行业专业人员中级(法规+银行管理)历年参考题库含答案解析(5套)
- 2025年职业技能鉴定-石雕工-石雕工(高级)历年参考题库含答案解析(5套)
- 2025年综合评标专家-甘肃-甘肃综合评标专家(工程造价类)历年参考题库含答案解析(5套)
- 京东集团员工手册-京东
- 2023年苏州市星海实验中学小升初分班考试数学模拟试卷及答案解析
- GB/T 37915-2019社区商业设施设置与功能要求
- GB/T 31298-2014TC4钛合金厚板
- GB/T 27746-2011低压电器用金属氧化物压敏电阻器(MOV)技术规范
- GB/T 22237-2008表面活性剂表面张力的测定
- GB/T 13667.3-2003手动密集书架技术条件
- 导轨及线槽项目投资方案报告模板
- 复旦大学<比较财政学>课程教学大纲
- 书法的章法布局(完整版)
- GB∕T 10429-2021 单级向心涡轮液力变矩器 型式和基本参数
评论
0/150
提交评论