




已阅读5页,还剩11页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
赣县区第二高级中学2018-2019学年高二上学期数学期末模拟试卷含解析班级_ 座号_ 姓名_ 分数_一、选择题1 设函数y=的定义域为M,集合N=y|y=x2,xR,则MN=( )ABNC1,+)DM2 某单位安排甲、乙、丙三人在某月1日至12日值班,每人4天甲说:我在1日和3日都有值班;乙说:我在8日和9日都有值班;丙说:我们三人各自值班的日期之和相等据此可判断丙必定值班的日期是( )A2日和5日B5日和6日C6日和11日D2日和11日3 某几何体的三视图如下(其中三视图中两条虚线互相垂直)则该几何体的体积为( )A. B4C.D4 若函数的定义域是,则函数的定义域是( )A B C D5 已知集合,则A0或B0或3C1或D1或36 已知d为常数,p:对于任意nN*,an+2an+1=d;q:数列 an是公差为d的等差数列,则p是q的( )A充分不必要条件B必要不充分条件C充要条件D既不充分也不必要条件7 如图是七位评委为甲,乙两名参赛歌手打出的分数的茎叶图(其中m,n为数字09中的一个),则甲歌手得分的众数和乙歌手得分的中位数分别为a和b,则一定有( )AabBabCa=bDa,b的大小与m,n的值有关8 (m+1)x2(m1)x+3(m1)0对一切实数x恒成立,则实数m的取值范围是( )A(1,+)B(,1)CD9 若实数x,y满足不等式组则2x+4y的最小值是( )A6B6C4D210若向量(1,0,x)与向量(2,1,2)的夹角的余弦值为,则x为( )A0B1C1D211设函数f(x)=,则f(1)=( )A0B1C2D312已知棱长为1的正方体的俯视图是一个面积为1的正方形,则该正方体的正视图的面积不可能是( )A1BCD二、填空题13甲、乙、丙三位同学被问到是否去过A,B,C三个城市时,甲说:我去过的城市比乙多,但没去过B城市;乙说:我没去过C城市;丙说:我们三人去过同一城市;由此可判断乙去过的城市为14下列命题:集合的子集个数有16个;定义在上的奇函数必满足;既不是奇函数又不是偶函数;,从集合到集合的对应关系是映射;在定义域上是减函数其中真命题的序号是 15已知函数f(x)是定义在R上的单调函数,且满足对任意的实数x都有ff(x)2x=6,则f(x)+f(x)的最小值等于16在ABC中,角A,B,C的对边分别为a,b,c,sinA,sinB,sinC依次成等比数列,c=2a且=24,则ABC的面积是17用描述法表示图中阴影部分的点(含边界)的坐标的集合为18命题“若a0,b0,则ab0”的逆否命题是(填“真命题”或“假命题”)三、解答题19已知数列an的首项为1,前n项和Sn满足=+1(n2)()求Sn与数列an的通项公式;()设bn=(nN*),求使不等式b1+b2+bn成立的最小正整数n20【2017-2018学年度第一学期如皋市高三年级第一次联考】已知函数,其中(1)当时,求函数在上的值域;(2)若函数在上的最小值为3,求实数的取值范围.21在平面直角坐标系中,过点的直线与抛物线相交于点、两点,设,(1)求证:为定值;(2)是否存在平行于轴的定直线被以为直径的圆截得的弦长为定值?如果存在,求出该直线方程和弦长,如果不存在,说明理由22若已知,求sinx的值23(本小题满分10分)选修44:坐标系与参数方程以坐标原点为极点,以轴的非负半轴为极轴建立极坐标系,已知曲线的极坐标方程为方程为(),直线的参数方程为(为参数)(I)点在曲线上,且曲线在点处的切线与直线垂直,求点的直角坐标和曲线C的参数方程;(II)设直线与曲线有两个不同的交点,求直线的斜率的取值范围24(本小题满分10分)选修:几何证明选讲如图所示,已知与相切,为切点,过点的割线交圆于两点,弦,相交于点,为上一点,且()求证:;()若,求的长【命题意图】本题考查相交弦定理、三角形相似、切割线定理等基础知识,意在考查逻辑推理能力赣县区第二高级中学2018-2019学年高二上学期数学期末模拟试卷含解析(参考答案)一、选择题1 【答案】B【解析】解:根据题意得:x+10,解得x1,函数的定义域M=x|x1;集合N中的函数y=x20,集合N=y|y0,则MN=y|y0=N故选B2 【答案】C【解析】解:由题意,1至12的和为78,因为三人各自值班的日期之和相等,所以三人各自值班的日期之和为26,根据甲说:我在1日和3日都有值班;乙说:我在8日和9日都有值班,可得甲在1、3、10、12日值班,乙在8、9、2、7或8、9、4、5,据此可判断丙必定值班的日期是6日和11日,故选:C【点评】本题考查分析法,考查学生分析解决问题的能力,比较基础3 【答案】【解析】选D.根据三视图可知,该几何体是一个棱长为2的正方体挖去一个以正方体的中心为顶点,上底面为底面的正四棱锥后剩下的几何体如图,其体积V23221,故选D.4 【答案】B 【解析】5 【答案】B【解析】,故或,解得或或,又根据集合元素的互异性,所以或。6 【答案】A【解析】解:p:对于任意nN*,an+2an+1=d;q:数列 an是公差为d的等差数列,则p:nN*,an+2an+1d;q:数列 an不是公差为d的等差数列,由pq,即an+2an+1不是常数,则数列 an就不是等差数列,若数列 an不是公差为d的等差数列,则不存在nN*,使得an+2an+1d,即前者可以推出后者,前者是后者的充分条件,即后者可以推不出前者,故选:A【点评】本题考查等差数列的定义,是以条件问题为载体的,这种问题注意要从两个方面入手,看是不是都能够成立7 【答案】C【解析】解:根据茎叶图中的数据,得;甲得分的众数为a=85,乙得分的中位数是b=85;所以a=b故选:C8 【答案】C【解析】解:不等式(m+1)x2(m1)x+3(m1)0对一切xR恒成立,即(m+1)x2(m1)x+3(m1)0对一切xR恒成立若m+1=0,显然不成立若m+10,则 解得a故选C【点评】本题的求解中,注意对二次项系数的讨论,二次函数恒小于0只需9 【答案】B【解析】解:作出不等式组对应的平面区域如图:设z=2x+4y得y=x+,平移直线y=x+,由图象可知当直线y=x+经过点C时,直线y=x+的截距最小,此时z最小,由,解得,即C(3,3),此时z=2x+4y=23+4(3)=612=6故选:B【点评】本题主要考查线性规划的应用,利用目标函数的几何意义是解决本题的关键10【答案】A【解析】解:由题意=,1+x=,解得x=0故选A【点评】本题考查空间向量的夹角与距离求解公式,考查根据公式建立方程求解未知数,是向量中的基本题型,此类题直接考查公式的记忆与对概念的理解,正确利用概念与公式解题是此类题的特点11【答案】D【解析】解:f(x)=,f(1)=ff(7)=f(5)=3故选:D12【答案】C【解析】解:水平放置的正方体,当正视图为正方形时,其面积最小为1;当正视图为对角面时,其面积最大为因此满足棱长为1的正方体的俯视图是一个面积为1的正方形,则该正方体的正视图的面积的范围为因此可知:A,B,D皆有可能,而1,故C不可能故选C【点评】正确求出满足条件的该正方体的正视图的面积的范围为是解题的关键二、填空题13【答案】A 【解析】解:由乙说:我没去过C城市,则乙可能去过A城市或B城市,但甲说:我去过的城市比乙多,但没去过B城市,则乙只能是去过A,B中的任一个,再由丙说:我们三人去过同一城市,则由此可判断乙去过的城市为A故答案为:A【点评】本题主要考查简单的合情推理,要抓住关键,逐步推断,是一道基础题14【答案】【解析】试题分析:子集的个数是,故正确.根据奇函数的定义知正确.对于为偶函数,故错误.对于没有对应,故不是映射.对于减区间要分成两段,故错误.考点:子集,函数的奇偶性与单调性【思路点晴】集合子集的个数由集合的元素个数来决定,一个个元素的集合,它的子集的个数是个;对于奇函数来说,如果在处有定义,那么一定有,偶函数没有这个性质;函数的奇偶性判断主要根据定义,注意判断定义域是否关于原点对称.映射必须集合中任意一个元素在集合中都有唯一确定的数和它对应;函数的定义域和单调区间要区分清楚,不要随意写并集.115【答案】6 【解析】解:根据题意可知:f(x)2x是一个固定的数,记为a,则f(a)=6,f(x)2x=a,即f(x)=a+2x,当x=a时,又a+2a=6,a=2,f(x)=2+2x,f(x)+f(x)=2+2x+2+2x=2x+2x+42+4=6,当且仅当x=0时成立,f(x)+f(x)的最小值等于6,故答案为:6【点评】本题考查函数的最值,考查运算求解能力,注意解题方法的积累,属于中档题16【答案】4 【解析】解:sinA,sinB,sinC依次成等比数列,sin2B=sinAsinC,由正弦定理可得:b2=ac,c=2a,可得:b=a,cosB=,可得:sinB=,=24,可得:accosB=ac=24,解得:ac=32,SABC=acsinB=4故答案为:417【答案】(x,y)|xy0,且1x2,y1 【解析】解:图中的阴影部分的点设为(x,y)则x,y)|1x0,y0或0x2,0y1=(x,y)|xy0且1x2,y1故答案为:(x,y)|xy0,且1x2,y118【答案】真命题 【解析】解:若a0,b0,则ab0成立,即原命题为真命题,则命题的逆否命题也为真命题,故答案为:真命题【点评】本题主要考查命题的真假判断,根据逆否命题的真假性相同是解决本题的关键三、解答题19【答案】 【解析】解:()因为=+1(n2),所以是首项为1,公差为1的等差数列,则=1+(n1)1=n,从而Sn=n2当n=1时,a1=S1=1,当n1时,an=SnSn1=n2(n1)2=2n1因为a1=1也符合上式,所以an=2n1()由()知bn=,所以b1+b2+bn=,由,解得n12所以使不等式成立的最小正整数为13【点评】本小题主要考查数列、不等式等基础知识,考查运算求解能力,考查化归与转化思想20【答案】(1);(2).【解析】试题分析:(1)求导,再利用导数工具即可求得正解;(2)求导得,再分和两种情况进行讨论;试题解析:(1)解: 时, 则 令得列表+ -+单调递增单调递减单调递增 21 由上表知函数的值域为 (2)方法一:当时,函数在区间单调递增所以 即(舍) 当时,函数在区间单调递减 所以 符合题意 当时,当时,区间在单调递减当时,区间在单调递增 所以化简得:即所以或(舍)注:也可令则对在单调递减所以不符合题意综上所述:实数取值范围为方法二:当时,函数在区间单调递减 所以 符合题意 8分当时,函数在区间单调递增所以不符合题意 当时,当时,区间在单调递减当时,区间在单调递增 所以不符合题意综上所述:实数取值范围为21【答案】(1)证明见解析;(2)弦长为定值,直线方程为.【解析】(2)根据两点间距离公式、点到直线距离公式及勾股定理可求得弦长为 ,进而得时为定值.试题解析:(1)设直线的方程为,由得,因此有为定值111(2)设存在直线:满足条件,则的中点,因此以为直径圆的半径,点到直线的距离,所以所截弦长为当,即时,弦长为定值2,这时直线方程为考点:1、直线与圆、直线与抛物线的位置关系的性质;2、韦达定理、点到直线距离公式及定值问题.22【
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025北京市海淀区育鹰小学招聘5人考前自测高频考点模拟试题附答案详解(考试直接用)
- 2025年绥化市中医医院招聘模拟试卷及答案详解(历年真题)
- 2025年淮北濉溪县现代农业投资发展有限责任公司招聘5人模拟试卷附答案详解(考试直接用)
- 2025辽宁能源控股集团所属抚矿集团拟聘人员补录模拟试卷附答案详解(典型题)
- 2025贵州省计量测试院参加第十三届贵州人才博览会引才4人模拟试卷及答案详解(历年真题)
- 2025河南省耕地租赁合同
- 2025金华市教育局所属金华教育学院公开招聘教师6人考前自测高频考点模拟试题及答案详解(名师系列)
- 远秋医学考试题库及答案
- 国企行测考试题库及答案
- 招聘卫生专干考试题库及答案
- 教科版科学四年级上册第一单元《声音》大单元整体教学设计
- 银行理财推广营销方案
- 医院培训课件:《中医护理技术质量与安全管理》
- 历史课程中的跨学科教学与学科整合
- 技能培训资料:高压电动机线圈更换注意事项
- 移情训练法移情训练法
- 《大卫 科波菲尔(节选)》《复活》《老人与海》《百年孤独》 统编版高中语文选择性必修上册
- 2019版35kV输变电工程典型设计铁塔型录
- 展厅施工方案表
- 短视频的拍摄与剪辑
- 福建蓝田水泥有限公司脱销氨水系统升级改造环境影响报告
评论
0/150
提交评论