




已阅读5页,还剩10页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
武进区一中2018-2019学年上学期高二数学12月月考试题含解析班级_ 座号_ 姓名_ 分数_一、选择题1 图 1是由哪个平面图形旋转得到的( ) A B C D 2 与圆C1:x2+y26x+4y+12=0,C2:x2+y214x2y+14=0都相切的直线有()A1条B2条C3条D4条3 函数f(x)=有且只有一个零点时,a的取值范围是( )Aa0B0aCa1Da0或a14 已知抛物线与双曲线的一个交点为M,F为抛物线的焦点,若,则该双曲线的渐近线方程为 A、 B、 C、 D、5 设集合是三角形的三边长,则所表示的平面区域是( ) A B C D6 已知f(x)是定义在R上的奇函数,且f(x2)=f(x+2),当0x2时,f(x)=1log2(x+1),则当0x4时,不等式(x2)f(x)0的解集是( )A(0,1)(2,3)B(0,1)(3,4)C(1,2)(3,4)D(1,2)(2,3)7 将函数f(x)=3sin(2x+)()的图象向右平移(0)个单位长度后得到函数g(x)的图象,若f(x),g(x)的图象都经过点P(0,),则的值不可能是( )ABCD8 若定义在R上的函数f(x)满足f(0)=1,其导函数f(x)满足f(x)k1,则下列结论中一定错误的是( )ABCD9 在中,其面积为,则等于( )A B C D10在平面直角坐标系中,向量(1,2),(2,m),若O,A,B三点能构成三角形,则()A B C D11若集合M=y|y=2x,x1,N=x|0,则 NM( )A(11,B(0,1C1,1D(1,212函数f(x)的图象向右平移1个单位长度,所得图象与曲线y=ex关于y轴对称,则f(x)=( )Aex+1Bex1Cex+1Dex1二、填空题13ABC中,BC=3,则C= 14设,在区间上任取一个实数,曲线在点处的切线斜率为,则随机事件“”的概率为_.15已知三棱锥的四个顶点均在球的球面上,和所在的平面互相垂直,则球的表面积为 .161785与840的最大约数为17已知函数f(x)=x2+xb+(a,b为正实数)只有一个零点,则+的最小值为18如图,在长方体ABCDA1B1C1D1中,AB=5,BC=4,AA1=3,沿该长方体对角面ABC1D1将其截成两部分,并将它们再拼成一个新的四棱柱,那么这个四棱柱表面积的最大值为三、解答题19设a0,是R上的偶函数()求a的值;()证明:f(x)在(0,+)上是增函数20(本小题满分12分)已知点,直线与圆相交于两点, 且,求.(1)的值;(2)线段中点的轨迹方程;(3)的面积的最小值.21(本小题满分12分)某媒体对“男女延迟退休”这一公众关注的问题进行名意调查,下表是在某单位得到的数据: 赞同 反对合计男50 150200女30 170 200合计 80320 400()能否有能否有的把握认为对这一问题的看法与性别有关?()从赞同“男女延迟退休”的80人中,利用分层抽样的方法抽出8人,然后从中选出2人进行陈述发言,求事件“选出的2人中,至少有一名女士”的概率参考公式:,【命题意图】本题考查统计案例、抽样方法、古典概型等基础知识,意在考查统计的思想和基本运算能力22(本小题满分12分)已知数列的各项均为正数,.()求数列的通项公式;()求数列的前项和23已知椭圆C: +=1(ab0)的短轴长为2,且离心率e=,设F1,F2是椭圆的左、右焦点,过F2的直线与椭圆右侧(如图)相交于M,N两点,直线F1M,F1N分别与直线x=4相交于P,Q两点()求椭圆C的方程;()求F2PQ面积的最小值24某实验室一天的温度(单位:)随时间(单位;h)的变化近似满足函数关系;(1) 求实验室这一天的最大温差;(2) 若要求实验室温度不高于,则在哪段时间实验室需要降温?武进区一中2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1 【答案】A【解析】试题分析:由题意得,根据旋转体的概念,可知该几何体是由A选项的平面图形旋转一周得到的几何体故选A.考点:旋转体的概念.2 【答案】C【解析】【分析】先求出两圆的圆心和半径,判断两个圆的位置关系,从而确定与它们都相切的直线条数【解答】解:圆C1:x2+y26x+4y+12=0,C2:x2+y214x2y+14=0的方程可化为,;圆C1,C2的圆心分别为(3,2),(7,1);半径为r1=1,r2=6两圆的圆心距=r2r1;两个圆外切,它们只有1条内公切线,2条外公切线故选C3 【答案】D【解析】解:f(1)=lg1=0,当x0时,函数f(x)没有零点,故2x+a0或2x+a0在(,0上恒成立,即a2x,或a2x在(,0上恒成立,故a1或a0;故选D【点评】本题考查了分段函数的应用,函数零点与方程的关系应用及恒成立问题,属于基础题4 【答案】【解析】:依题意,不妨设点M在第一象限,且Mx0,y0,由抛物线定义,|MF|x0,得5x02.x03,则y24,所以M3,2,又点M在双曲线上,241,则a2,a,因此渐近线方程为5x3y0.5 【答案】A【解析】考点:二元一次不等式所表示的平面区域.6 【答案】D【解析】解:f(x)是定义在R上的奇函数,且f(x2)=f(x+2),f(0)=0,且f(2+x)=f(2x),f(x)的图象关于点(2,0)中心对称,又0x2时,f(x)=1log2(x+1),故可作出fx(x)在0x4时的图象,由图象可知当x(1,2)时,x20,f(x)0,(x2)f(x)0;当x(2,3)时,x20,f(x)0,(x2)f(x)0;不等式(x2)f(x)0的解集是(1,2)(2,3)故选:D【点评】本题考查不等式的解法,涉及函数的性质和图象,属中档题7 【答案】C【解析】函数f(x)=sin(2x+)()向右平移个单位,得到g(x)=sin(2x+2),因为两个函数都经过P(0,),所以sin=,又因为,所以=,所以g(x)=sin(2x+2),sin(2)=,所以2=2k+,kZ,此时=k,kZ,或2=2k+,kZ,此时=k,kZ,故选:C【点评】本题考查的知识点是函数y=Asin(x+)的图象变换,三角函数求值,难度中档8 【答案】C【解析】解;f(x)=f(x)k1,k1,即k1,当x=时,f()+1k=,即f()1=故f(),所以f(),一定出错,故选:C9 【答案】B【解析】试题分析:由题意得,三角形的面积,所以,又,所以,又由余弦定理,可得,所以,则,故选B考点:解三角形【方法点晴】本题主要考查了解三角形问题,其中解答中涉及到三角形的正弦定理和余弦定理、三角形的面积公式等知识点的综合考查,着重考查了学生分析问题和解答问题的能力,以及推理与运算能力,本题的解答中利用比例式的性质,得到是解答的关键,属于中档试题10【答案】B【解析】【知识点】平面向量坐标运算【试题解析】若O,A,B三点能构成三角形,则O,A,B三点不共线。若O,A,B三点共线,有:-m=4,m=-4故要使O,A,B三点不共线,则。故答案为:B11【答案】B【解析】解:由M中y=2x,x1,得到0y2,即M=(0,2,由N中不等式变形得:(x1)(x+1)0,且x+10,解得:1x1,即N=(1,1,则MN=(0,1,故选:B【点评】此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键12【答案】D【解析】解:函数y=ex的图象关于y轴对称的图象的函数解析式为y=ex,而函数f(x)的图象向右平移1个单位长度,所得图象与曲线y=ex的图象关于y轴对称,所以函数f(x)的解析式为y=e(x+1)=ex1即f(x)=ex1故选D二、填空题13【答案】【解析】解:由,a=BC=3,c=,根据正弦定理=得:sinC=,又C为三角形的内角,且ca,0C,则C=故答案为:【点评】此题考查了正弦定理,以及特殊角的三角函数值,正弦定理很好的建立了三角形的边角关系,熟练掌握正弦定理是解本题的关键,同时注意判断C的范围14【答案】【解析】解析:本题考查几何概率的计算与切线斜率的计算,由得,随机事件“”的概率为15【答案】 【解析】如图所示,为直角,即过的小圆面的圆心为的中点,和所在的平面互相垂直,则球心O在过的圆面上,即的外接圆为球大圆,由等边三角形的重心和外心重合易得球半径为,球的表面积为16【答案】105 【解析】解:1785=8402+105,840=1058+0840与1785的最大公约数是105故答案为10517【答案】9+4 【解析】解:函数f(x)=x2+xb+只有一个零点,=a4(b+)=0,a+4b=1,a,b为正实数,+=(+)(a+4b)=9+9+2=9+4当且仅当=,即a=b时取等号,+的最小值为:9+4故答案为:9+4【点评】本题考查基本不等式,得出a+4b=1是解决问题的关键,属基础题18【答案】114 【解析】解:根据题目要求得出:当53的两个面叠合时,所得新的四棱柱的表面积最大,其表面积为(54+55+34)2=114故答案为:114【点评】本题考查了空间几何体的性质,运算公式,学生的空间想象能力,属于中档题,难度不大,学会分析判断解决问题三、解答题19【答案】 【解析】解:(1)a0,是R上的偶函数f(x)=f(x),即+=,+a2x=+,2x(a)(a)=0,(a)(2x+)=0,2x+0,a0,a=0,解得a=1,或a=1(舍去),a=1;(2)证明:由(1)可知,x0,22x1,f(x)0,f(x)在(0,+)上单调递增;【点评】本题主要考查函数单调性的判断问题函数的单调性判断一般有两种方法,即定义法和求导判断导数正负20【答案】(1);(2);(3)【解析】试题分析:(1)利用,得圆心到直线的距离,从而,再进行化简,即可求解的值;(2)设点的坐标为,则代入,化简即可求得线段中点的轨迹方程;(3)将面积表示为,再利用基本不等式,即可求得的面积的最小值.(3),当时, 面积最小, 最小值为.考点:直线与圆的综合问题.【方法点晴】本题主要考查了直线与圆的综合问题,其中解答中涉及到点到直线的距离公式、轨迹方程的求解,以及基本不等式的应用求最值等知识点的综合考查,着重考查了转化与化归思想和学生分析问题和解答问题的能力,本题的解答中将面积表示为,再利用基本不等式是解答的一个难点,属于中档试题.21【答案】【解析】()根据题中的数据计算:因为6255024,所以有975%的把握认为对这一问题的看法与性别有关()由已知得抽样比为,故抽出的8人中,男士有5人,女士有3人分别设为,选取2人共有,28个基本事件,其中事件“选出的2人中,至少有一名女士”包含18个基本事件,故所求概率为22【答案】(本小题满分12分)解: ()由得,是等差数列,公差为4,首项为4, (3分),由得 (6分)(), (9分) 数列的前项和为 (12分)23【答案】 【解析】解:()椭圆C: +=1(ab0)的短轴长为2,且离心率e=,解得a2=4,b2=3,椭圆C的方程为=1()设直线MN的方程为x=ty+1,(),代入椭圆,化简,得(3t2+4)y2+6ty9=0,设M(x1,y1),N(x2,y2),又F1(1,0),F2(1,0),则直线F1M:,令x=4,得P(4,),同理,Q(4,),=|=15|=180|,令=1,),则=180,y=在1,)上是增函数,当=1时,即t=0时,()min=【点评】本题考查椭圆方程的求法,考查三角形面积的最小值的求法,是中档题,解题
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 检验检测机构资质认定评审准则试题及答案
- 爱莲说默写题目及答案
- er图题目及答案
- 2025-2030中国炒瓜子产业销售动态及经营效益预测报告
- 工业互联网平台架构助力制造业数字化转型策略报告
- 特殊教育考试题库及答案
- 2025年数控机床智能化升级技术路径选择与市场拓展报告
- 武汉大学人民医院岗位招聘笔试真题2024
- 2025-2030特种设备安全监管趋严背景下的行业洗牌报告
- 2025-2030煤炭化工设备技术发展趋势与投资风险评估
- 教师信息技术能力提升培训
- 甲状腺癌病例分享
- 文化艺术活动策划与执行方案
- 意识障碍护理评估要点
- 药液外渗护理不良事件
- 浙江省湖州市2024-2025学年高一下学期期末考试数学试卷
- GB/T 45695-2025空铁旅客联运服务质量要求
- 2025至2030中国酒店用品行业产业运行态势及投资规划深度研究报告
- 青少年研学营地行业跨境出海项目商业计划书
- 高纯气体不锈钢管道施工方案
- 2025-2030年中国汽车电机行业供需分析及发展前景研究报告
评论
0/150
提交评论