说明书正文.doc

滚齿机床身部件结构设计【13张CAD图纸和说明书】

收藏

资源目录
跳过导航链接。
压缩包内文档预览:(预览前20页/共29页)
预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图
编号:14968326    类型:共享资源    大小:2.45MB    格式:RAR    上传时间:2019-02-21 上传人:俊****计 IP属地:江苏
40
积分
关 键 词:
13张CAD图纸和说明书 滚齿机床身部件结构设计 张CAD图纸和说明书】 张CAD图纸】【 张CAD图纸 部件设计说明书 张CAD图纸】 设计【CAD图纸 设计【说明书
资源描述:

目    录

1  前   言 1

2  总体设计 3

2.1滚齿机工作原理 3

2.1.1加工直齿轮时机床的运动和传动原理 3

2.1.2加工斜齿圆柱齿轮时的运动和传动原理 3

2.2拟定选择传动方案 4

2.3 主切削力的估算及电动机的选择 8

3  机床床身装配结构设计 9

3.1 滚齿机床身的特性 9

3.2 滚齿机床身的结构分析 9

3.3 床身材料的选择 10

3.4 床身导轨及机床的润滑 11

4  差动机构设计 13

4.1 总传动比的计算 13

4.2 传动比的分配 13

4.3 设计计算 14

4.3.1 螺旋伞齿轮的设计 14

4.3.2 运动合成机构设计 15

4.3.3差动蜗轮设计 16

4.3.4圆柱直齿轮的设计 20

5 结束语 25

参考文献 26

致    谢 27

附件清单 28


1 前   言

齿轮加工机床是一种技术含量高而且机构复杂的机床系统,由于齿轮使用的量大面广,齿轮加工机床已成为机械等行业的关键设备。特别是,随着汽车行业的高速发展,对齿轮的需求量日益增加,对齿轮加工的效率、质量及加工成本的要求愈来愈高,使齿轮加工机床在汽车、摩托车等行业中占有越来越重要的作用。滚齿机是齿轮加工机床中的一种,其占齿轮加工机床拥有量的40%~50%。它主要用来加工圆柱齿轮和蜗轮等。传统滚齿机在加工过程中有以下特点:

a.滚削钢齿轮时,应用切削液可提高刀具寿命,改善加工表面的质量和利于排出切削热而不致引起机床的热变形;

b.机床漏、混油严重;

c.加工成本高;

d.生产效率低下,加工质量差,难以满足现代企业生产的要求。

近几年,我国在滚齿机设计技术方面研究的主要内容经历了从传统机械式滚齿机通过数控改造发展为2-3轴(直线运动轴)实用型数控高效滚齿机,到全新的六轴四联动数控高速滚齿机的开发。滚齿机加工(钢件)全部采用湿式滚齿方式。目前,国内主要滚齿机制造商重庆机床厂及南京二机床有限责任公司生产的系列数控高效滚齿机已采取全密封护罩加油雾分离器和磁力排屑器的方式部分地解决环保问题。世界上滚齿机产量最大的制造商——重庆机床厂从2001 年开始研究面向绿色制造的高速干切滚齿技术,2002年初研制成功既能干切又能湿切的YKS3112六轴四联动数控高速滚齿机,2003年初又开始研制面向绿色制造的YE3116CNC7高速干式切削滚齿机,即将进入商品化阶段。

在提高生产效率、降低制造成本的同时,做到环境保护、清洁加工是当前国外先进发达国家对机床研究的最前沿技术。如美国、德国及日本,他们的部分公司生产的滚齿机都是全数控式的,中小规格滚齿机都在朝着高速方向发展,所有高效机床均采用了全密封护罩加油雾分离器及磁力排屑器的方式部分地解决环保问题。面向绿色制造的先进滚齿机主要有带有全密封护罩和油雾分离器的湿切滚齿机、低温冷风切削滚齿机、高速干式切削滚齿机等类别,其中高速干式切削滚齿机以其高速、高效、不使用切削液、单件生产成本低等优势将成为面向绿色制造的滚齿机今后发展的主要趋势。

随着工业的发展,先进技术的不断更新进步,对加工设备的要求也不断提高,在机床的设计中,需要对其组成部件进行严密的分析和计算。机床床身等支承件的重量要占机床总重量的80%-85%,因此对支承件的单位重量、刚度提出了较高的要求。在重量轻的条件下,需要保证支承件具有足够的静刚度。所以对支承件材料的选择、分布、支承件壁厚和开孔位置的合理性提出了要求,必须进行分析计算。

我所设计的课题来源于生产实践,是滚齿机床身部件结构设计。该床身为箱形结构,与底座铸成一个整体,左上部是方形导轨,留安放工作台之用;右上部是用来固定刀架、立柱;床身内部安装差动机构;床身后端连出分齿挂轮架;背面为主传动牙箱;左面底盘为冷却箱;右面底盘为润滑油箱;主电动机和冷却电动机都安装在床身上,方形导轨中间装一丝杆供移动工作台之用,分度挂轮架处的手柄供铣正齿轮或者斜齿轮时操纵使用。床身结构的静、动态特性对床身的机械特性、机床产品质量、机床的动态加工精度具有重要意义。

通过市场调查,对国内现有机型进行对比分析。选择适合于我国目前的生产水平使用的机型作为参考,改进其不足,以达到各方面的要求。床身结构的静、动态特性与机床产品的整体性能有着密切的关系,提高床身的机械特性,对于提高机床产品质量,保证机车的动态加工精度具有重要意义。传统的结构大件设计方法,往往仅注重床身件静态性能、制造工艺性以及外形美观协调等方面的要求,而忽略了它对产品动态性能的影响。结构件的动态特性与其尺寸、形状、材料等有着密切关系。我所设计的滚齿机床身,其技术要求如下:

a.机床能满足强度、刚度、寿命、工艺性与经济性等方面的要求;

b.机床要求运行平稳、工件可靠、结构合理、装卸方便、便于维修与调整;

c.机床应能满足加工要求,保证加工精度。

本次设计的滚齿机床身的预期效果是:

a.能满足机床的基本要求,如强度、刚度、寿命、工艺性与经济性等;

b.运行可靠,便于维修和装卸;

c.保证加工质量和精度要求。

由于我国的工业水平发展与发达国家相比还有一定的差距,齿轮加工生产在质量、精度等方面还需要进行提高。因此必须对现有机床进行优化改造。当前,齿轮加工行业对制造精度、生产效率、质量及清洁等都有着非常高的要求,所以我们必须集思广益,通过学习、研究来进行机床的设计。

从毕业设计布置任务开始,就必须投入全部精力,因为整个设计过程中必须考虑各方面的问题。首先,对滚齿机的形状和工作原理都很陌生,必须要到工厂参观实习;其次,所学的理论知识只是一些最基本的机械常识,根本不能达到设计的要求。因此,还要查阅大量的资料、图纸、说明书等信息来补充自己的不足之处。要顺利完成这次设计,对我们提出了以下要求。

扎实的专业知识是设计的基本条件,并且要做到开拓创新、举一反三。整个设计也就是不断复习和学习的过程。其次要有丰富的实践经验,因为只靠资料是不够的,通过指导老师的带领,我们到盐城市机床厂进行参观实习,并且向企业的技术人员询问相关的原理。只有这样,设计的成果在合理性、经济性、工艺性、实用性等方面才能满足要求。


2 总体设计

2.1滚齿机工作原理

滚齿加工是依照交错轴螺旋齿轮啮合原理进行的。用齿轮滚刀加工的过程,就相当于一对螺旋齿轮啮合的过程。将其中的一个齿轮的齿数减少到几个或一个,螺旋角增大到很大,成螺杆状,再开槽并铲背,使其具有切削性能,就成了齿轮滚刀。机床使滚刀和工件保持一对螺旋齿轮副啮合关系作相关旋转运动时,就可在工件上滚切出具有渐开线齿廓的齿槽。滚齿时,切出的齿廓是滚刀切削刃运动轨迹的包络线。所以,滚齿时齿廓的成形方法是展成法,即成形运动是滚刀旋转运动和工件旋转运动组成的复合运动,这个复合运动称为展成运动。再加上滚刀沿工件轴线垂直进给运动就可切出一个齿长。


内容简介:
International Journal of Machine Tools received in revised form 7 July 2000; accepted 13 July 2000 Abstract This paper describes a drill grinding machine that can produce conical twist drill points with very accu- rately specifi ed point shapes. The machine is adjusted by precise orthogonal movements using shims and gages to make sure that the drill parameters are set precisely. The confi dence in the point shape produced is high enough that inspection of the points produced is not necessary. Keywords: Drill grinding; Drill sharpening; Cone model drill point; Twist drill grinding 1. Introduction There are some problems in the adjustment of existing simple conical twist drill grinding machines. Many of these machines allow the operator to easily vary point parameters that are not very important as far as drilling performance is concerned, such as point angle, and at the same time do not allow straightforward adjustment of parameters that have a very powerful effect on performance, such as skew distance, d parameter described by Tsai and Wu 1,2 and w parameter described by Fugelso 3,4. Most machines adjust w in a trial-and-error manner until an acceptable but uncharacterized drill is produced. This leads to variations in batches of drill points produced. After a conical drill point has been produced it is very diffi cult to measure the point and ascertain its model parameters. It is easy to fi nd the sum of q and f because twice that sum is the easily measured point angle, but separating q and f is diffi cult. The measured chisel edge angle contains the w parameter and w cannot easily be separated from the chisel edge angle. While the d parameter cannot be measured directly, Tsai and Wu 1 showed that it can be inferred * Fax: +1-218-726-8596. E-mail address: mfugelso (M.A. Fugelso). 916M.A. Fugelso / International Journal of Machine Tools a chisel edge angle less than 120 sacrifi ces potential drill performance. The angle f is fi xed at 29 to give a standard 917M.A. Fugelso / International Journal of Machine Tools & Manufacture 41 (2001) 915922 Fig. 1.Cone model of a twist drill point. Fig. 2.Side view of the standard conical twist drill grinder. point angle of 118, the point angle being double the sum of f and q. If desired q and f could be different, but the above values should be adequate for a wide range of applications. Skew distance has a great effect on drill geometry. A small change in skew distance changes the relief angles as defi ned in 5 a great deal. An increase in skew distance results in a uniform 918M.A. Fugelso / International Journal of Machine Tools & Manufacture 41 (2001) 915922 increase in relief angle over the entire length of the cutting edge of the drill. Typically the skew distance is about equal to the web thickness. The skew distance S can be accurately adjusted by varying the thickness of shim P, Fig. 3. The value of skew distance is equal to a machine constant P0determined after construction minus the shim thickness P. The d parameter can be adjusted with shim Q, Fig. 3. The shim Q causes displacements at right angles to the displacements caused by shim P, raising and lowering the drill blank. The shim thickness Q is given by the following equation that is a function of drill diameter D and the d parameter: Q5Q02 D 2 sin 45 sin(q+f)2 d cos q. (1) The d parameter is a function of the drill diameter because the drill is held in a V groove. If the drill were held in a chuck, d would not be a function of drill diameter. The value of d should be equal to 6090% of the drill diameter, as small as possible without making the chisel edge angle too large, i.e., greater than 133. This results in the relief angle increasing as much as possible along the cutting edge traveling toward the drill axis. Most existing drill grinders do not allow adjustment of this parameter and have a built-in fi xed d value that is marginally acceptable for large drills and much too large for smaller drills. The top side of gage G must be at a distance J from the cone tip to properly align w, Fig. 2. J is given by: J5d1 d cos q 2 sin(q+f). (2) Then distance R would be: R5R02J.(3) Fig. 3.Isometric view of the standard conical twist drill grinder. 919M.A. Fugelso / International Journal of Machine Tools & Manufacture 41 (2001) 915922 Fig. 4.Setting distance R, with drill rotated 90 about cone axis. Fig. 4 shows the distance R from gage G to the base. The gage G must be positioned along the Z axis of the fl ute stop, Fig. 5, so that it engages the fl ute of the drill, but this is not a precision adjustment because of the concave shape of the fl ute. The w parameter is adjusted by the width (w) of gage G. The drill holder rotates 90 about the cone axis AA9. Then the gage contacts the point on the drill where the cutting edge will reach the outside diameter after grinding has taken place, Figs. 4 and 5. This results in setting w from fi rst principles, w is given by the following equ- ation: Fig. 5.Setting drill point w parameter. 920M.A. Fugelso / International Journal of Machine Tools & Manufacture 41 (2001) 915922 w5w02W 2 2D 2 tan w.(4) The w parameter ranges from zero to a small positive angle, not more than +15. Increasing w by 1 increases the chisel edge angle by 1. Increasing w has a benefi cial effect on the distribution of relief angle along the cutting edge, see Fugelso 3,4. But doing this increases chisel edge angle. The chisel edge angle must be less than about 133 or the chisel edge will be too long. Often the w parameter is increased to compensate for a built-in d parameter that is too large, as demonstrated by Fugelso 3. After touching off the drill fl ute on the gage G as shown in Fig. 4, the drill is clamped in the V groove drill holder and the drill holder is rotated backward by 90 on the cone axis, encoun- tering the grinding wheel and forming half the point. The drill is then loosened and rotated about 180, and the drill holder is rotated forward 90. The second fl ute is touched off on gage G to line up the second half of the point and the drill is reclamped. Then the drill holder is rotated back again, forming the second half of the point. For clarity the clamps and AA9 axis rotation stops are not shown on the fi gures. 3. Calibration It is desirable to calibrate the machine without explicitly knowing the dimensions of the grinder because then the calibration is not affected by inaccurately formed or measured parts. While there is no easy way to get around measuring the angular dimensions, it is possible to calibrate without knowing many of the linear dimensions. But, fi nding P0is very simple and may be found utilizing ordinary measuring tools. The calibration of Q0and R0assumes that the grinding wheel can be moved along its axis of rotation and returned to a previous axial position accurately. R0may be found by replacing the rotating part of the grinder with a conical pointed calibrating rod, dashed lines in Fig. 2. R0is the distance from the base to the tip of the rod when the side of the cone touches the grinding wheel. The height HRfrom the tip of the rod to the base must be recorded to use in the calibration of Q0. HRonly needs to measured once because it has a constant ratio with R0. Q0may be found by placing a square calibrating bar on the V groove and measuring the height HSfrom the base to the point of contact of the square bar and the grinding wheel, dashed lines in Fig. 2. Also, the distance L should be measured at this point for future recalibrations. Then: Q05HR2HS1QC.(5) In a grinding machine intended to produce a wide range of drill diameters, the range of shim Q thicknesses required may be inconveniently large. The grinding wheel may be translated to the left increasing L, Fig. 2. Increasing L from its originally measured value will increase d and three of the calibration constants according to the following relations: Dd5DL/tan q2DL tan(902q2f) cos q,DR05DL/sin q,DHR5DL/tan q,DHS(6) 921M.A. Fugelso / International Journal of Machine Tools & Manufacture 41 (2001) 915922 5DL tan(902q2f). Eq. (6) also may be used to recalibrate the machine after dressing the side of the grinding wheel. The effect of wheel dressing is to create a small DL. 4. Accuracy When the V groove drill holder is in the position shown in Fig. 2, there is a very small gap between the drill point and the grinding wheel. The gap width is given by: Gap width5S(W/2) 2 D .(7) The gap width approaches 0.0 as the skew distance approaches its lower limit of W/2. This gap increases with increasing skew distance. Neglecting this gap produces a small error in of the second term of Eq. (2) of about 1%. This could result in a fraction of a degree error in the w parameter. This is acceptable because w is normally specifi ed in whole degrees, not fractions. 5. Discussion The drill points created by this standard drill grinder can be compared with drills produced by other grinders in a number of ways. The surface of the drill fl ank and its edges could be measured with a coordinate-measuring machine (CMM) to compare the point produced by a production grinder with a standard point. This would tell if the two points were the same. However, it would be good for the comparison if the drill parameters of the point could be extracted from the fl ank surface points measured by the CMM. Then the production drill grinder could be adjusted in a rational way so that it produces points the same as the standard drill grinder. Another comparison would be to conduct tool life tests of the standard point and the production point, but the problem is that the cutting performance could be quite similar for points that had different shapes. The drills produced by the standard grinder are intended to provide a geometric benchmark for tests of new drill point shapes. A third comparison would be to check the relief angle of the two drill points at the outer diameter (OD) and at a point near the end of the chisel edge. These angles are critical to drill performance. The relief angle near the chisel edge should be larger than at the OD. This approach would yield good drilling performance but still leave the shape of the production drill incom- pletely specifi ed. 6. Conclusions While cam-driven mechanical grinding machines and computer-controlled grinders can produce a wide variety of points with programmed changeover from one point shape to another, the drill 922M.A. Fugelso / International Journal of Machine Tools & Manufacture 41 (2001) 915922 grinder proposed in this paper, although somewhat tedious to set up, can produce large batches of identical cone points with high confi dence in the point shape being produced. This is especially important for very small diameter drills because they are diffi cult to inspect. These drills can be used for benchmark tests of common conical drill point performance for comparison with more complex points produced for research. Future work would include designing measuring techniques for production drill fl ank shapes, with this grinder providing the fi rst step toward rational compari- sons of drilling performance. References 1 W.D. Tsai, S.M. Wu, Computer analysis of drill point geometry, International Journal of Machine Tool Design and Research 19 (2) (1979) 95108. 2 W.D. Tsai, S.M. Wu, A mathematical model for drill point design and grinding, ASME Journal of Engineering for Industry 101 (1979) 330340. 3 M.A. Fugelso, Cylindrical fl ank twist drill points, ASME Journal of Engineering for Industry 105 (1983) 183186. 4 M.A. Fugelso, Conical fl ank twist drill points, International Journal of Machine Tools and Manufacture 30 (2) (1990) 291295. 5 ISO 3002/I-1977(e): Geometry of the Active Part of Cutting Tools, Part 1: General Term, Reference Systems, Tool and Working Angles. 外文翻译专 业 机械设计制造及其自动化 学 生 姓 名 黄 海 班 级 BD机制051 学 号 0520110112 指 导 教 师 邢 青 松 外文资料名称:A standard conical point drill grinding machine (用外文写)外文资料出处:International journal of machine tools&manufacture 附 件: 1.外文资料翻译译文 2.外文原文 指导教师评语: 签名: 年 月 日一个标准的圆锥点钻磨床M.A. Fugelso黄海 译摘要:本文介绍了一种钻头磨床能产生锥形麻花钻点并带有非常准确的点的形状。该机器通过精确正交动作用垫片来调整,这样是为了确保钻削参数设定准确。在这一点形状制作上有足够的精度,以至于要点制作的检查都是没有必要的。关键词:钻头磨削;钻头刃磨;牙轮钻机模型点;麻花钻磨削。1 前言现在在调整现有的简单锥形麻花钻磨削机器上存在着一些问题,操作者要求很容易就能改变这些机器不同点的参数,前提是这些参数对钻削运动不重要,如点的角度,同时不能对性能有非常大影响的参数进行简单直截了当的调整,例如通过图Tsai and Wu 1,2 描述的斜距d和图Fugelso 3,4 描述的参数。大多数机器在调整上采用试错方式,直到可以制成被接受的非特性的钻削才行,这导致不同分批钻点的形成。当锥形钻头的制作完成后,使得很难衡量点和确定其模型参数。由于很容易测出点的角度的两倍,使得很容易找到和,但分离和是困难的。实测横刃角包含参数,不能够脱离横刃角,同时不能直接测量参数d ,从Tsai and Wu 1 的表中可以推断出:如果其他参数都是知道的话,横刃角度可以从中推导出来。又因为锥体模型参数很复杂,使得很难检查这些点,因此首先制做出正确的点,这是很重要的。本文介绍了一种麻花钻磨床,该磨床上所有的锥钻点参数都是允许重新设置的,并保证这些参数是常用的,并且重复性好。这是因为它们是直接用垫片和盖奇块精确定位的一套钻机,它可以校准参数甚少的磨床零件尺寸且效果很好。图1 麻钻的锥点图2 标准麻花钻一边的观察图2 磨床的描述图1显示锥体模型的麻花钻点与参数半锥角()的轴线,锥轴角(),斜距(s)和锥尖到钻探的距离(d)如图Tsai and Wu 1,2中所描述。图2显示了圆锥钻头磨床配置标准。轴线AA是主轴的锥模。是定在30,因为沿着切削刃这可给人一个均匀分割角的感觉,但横刃角不能过大,见Fugelso 4 ;一横刃角度小于120,角度固定在29到标准值为118的点角度,点角度是和的和的两倍。如果想要和有所不同,上述的数值应该有足够广泛的应用范围。斜交距离对钻头的几何形状有很大的影响,一个斜距离的小小改变就会大大改变如 5 所定义的一样的限定的角度。增加斜交距离,将会导致限定角度按照一定的角度增长从而超过钻孔的切削边沿的整个角度。通常斜距离约等于网边厚度。如图.3,斜距中心S能由改变不同垫片的厚度P得到准确的调整。在横量减去一个垫片的厚度P后,斜交距离的数值就等于一台机器的常量。如图.3,通过调整垫片Q可以调整参数d。垫片P的位移会造成垫片Q成直角位移,以此来提高或降低钻机的空余间隙。该垫片厚度Q是可由包含钻直径D和d参数以下公式得到:其中d参数是钻孔直径,因为钻孔是放在V型槽里的。如果钻头被放在一个夹头里,d将不是钻孔直径。d的数值将和钻孔直径的60-90相当,尽可能小而不使横刃角度过大,即大于。这一结果使得随着剪切角度沿着钻轴进行切削,并使得整个角度会尽可能地增加。大多数现有的钻磨不容许调整这个参数,并有一个固定的d值,即对大的钻头仅可接受,而对小的钻头则过大。 如图 2.顶部G必须到锥尖处有一个适当的距离J,此时的合适角速度为w。J可由下式得到:,然后R距离可以由 得出:图3 标准麻花钻图4显示由表面G到该基地的距离R,测量仪必须定位于沿Z轴的出削槽。图5,表示的是钻孔和其出削槽的连接,但是因为该出削槽凹的形状,使得这个调整不是很精确。其中参数的调整由G的宽度w来进行计算,钻孔套可沿锥轴AA旋转90 左右。在磨削以后,切削边可达到外径测量仪接触点,如图4和5所示 。这一结果在第一
温馨提示:
1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
2: 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
3.本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
提示  人人文库网所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
关于本文
本文标题:滚齿机床身部件结构设计【13张CAD图纸和说明书】
链接地址:https://www.renrendoc.com/p-14968326.html

官方联系方式

2:不支持迅雷下载,请使用浏览器下载   
3:不支持QQ浏览器下载,请用其他浏览器   
4:下载后的文档和图纸-无水印   
5:文档经过压缩,下载后原文更清晰   
关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

网站客服QQ:2881952447     

copyright@ 2020-2025  renrendoc.com 人人文库版权所有   联系电话:400-852-1180

备案号:蜀ICP备2022000484号-2       经营许可证: 川B2-20220663       公网安备川公网安备: 51019002004831号

本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知人人文库网,我们立即给予删除!