基础物理下习题25答案.pdf_第1页
基础物理下习题25答案.pdf_第2页
基础物理下习题25答案.pdf_第3页
基础物理下习题25答案.pdf_第4页
基础物理下习题25答案.pdf_第5页
已阅读5页,还剩8页未读 继续免费阅读

付费下载

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

物理常数物理常数. . . . 普朗克常量 h=6.62610-34 Js,= h/2, 里德伯常量 R=1.09710-7 m-1, 真空中光速c=3108 m/s, 真空介电常数0 =8.8510-12 F/m, 真空磁导率 0 =410-7 H/m, 电子质量 me =9.1110-31 kg, 电子电量 e =1.6 10-19 C, 质子质量 mp = 1.6710-27 kg. 25 25 25 25 量子力学基础量子力学基础P255P255P255P255 25 25 25 25 量子力学基础量子力学基础P255P255P255P255 四部分四部分: : : : 波函数与概率波函数与概率6; 6; 6; 6; 一维无限深势阱一维无限深势阱4; 4; 4; 4; 氢原子定态解氢原子定态解4; 4; 4; 4; 不确定关系不确定关系5. 5. 5. 5. 25-1. 用自己的语言表述波函数的统计解释. 为什么说概率波是对微观客体 波粒二象性的统一描述. 波函数的模表达粒子在某时刻出现在某位置的概率, 设粒子在某时刻 在很大空间范围内都可能同时出现, 如同波动的运动形式分布于空间 各处, 则体现波性强; 若某时刻在某一空间位置出现的概率近似为1, 则它有具体一个占据点, 那么粒子性明显. 由此可见, 概率波是对微 观客体波粒二象性的统一描述. 25 25 25 25 量子力学基础量子力学基础P255P255P255P255 25-3. 设粒子波函数为(x,y,z) , 求在x-x+dx范围内找到粒子的概率. 25-4. 设用球坐标表示, 粒子的波函数为(r,) , (1)求粒子在球壳r-dr中被 测到的概率; (2) 粒子在(,)方向附近立体角d=sindd中出现的概率. ) ) ) ), , , , , , ,( ( ( () ) ) ), , , , , , ,( ( ( () ) ) ), , , , , , ,( ( ( () ) ) )( ( ( ( * * * * 2 2 2 2 z z z zy y y yx x x xz z z zy y y yx x x xdxdxdxdxz z z zy y y yx x x xdxdxdxdxx x x xx x x xWWWW = = = = = = =+ + + + = = = = = = = = = = = =+ + + + = = = = = = = 0 0 0 0 2 2 2 2 2 2 2 2 2 2 2 2 0 0 0 0 2 2 2 2 0 0 0 0 * * * * 2 2 2 2 0 0 0 0 2 2 2 2 0 0 0 0 2 2 2 2 2 2 2 2 sinsinsinsin ) ) ) ), , , , , , ,( ( ( ( ) ) ) )(sin(sin(sin(sin) ) ) )2 2 2 2( ( ( ( sinsinsinsin ) ) ) ), , , , , , ,( ( ( () ) ) ), , , , , , ,( ( ( ( sinsinsinsin) ) ) ) ) ) ), , , , , , ,( ( ( ( ( ( ( ) ) ) )( ( ( () ) ) )1 1 1 1( ( ( ( sinsinsinsin d d d dd d d ddrdrdrdrr r r rr r r rd d d dd d d dWWWW drdrdrdrr r r rd d d dd d d dr r r rr r r r drdrdrdrr r r rd d d dd d d dr r r rdrdrdrdrr r r rr r r rWWWW d d d ddrddrddrddrdr r r rdxdydzdxdydzdxdydzdxdydzdVdVdVdV球坐标系球坐标系球坐标系球坐标系 25-2. 设一维波函数为exp(ikx), 求粒子位置的概率分布. 此波函数是否能归一化? . . . ., , , ,. . . . 1 1 1 1) ) ) )( ( ( ( * * * * 2 2 2 2 因为分布无穷大因为分布无穷大因为分布无穷大因为分布无穷大不能归一化不能归一化不能归一化不能归一化轴上全空间轴上全空间轴上全空间轴上全空间等概率分布在等概率分布在等概率分布在等概率分布在x x x x e e e ee e e ex x x xWWWW ikxikxikxikxikxikxikxikx = = = = = = = = = = = = = 25 25 25 25 量子力学基础量子力学基础P255P255P255P255 25-5. 设粒子一维波函数为Aexp(- 2x2/2), 为正值常数, 试写出归一化的 波函数. ) ) ) )( ( ( ( 0 0 0 0 2 2 2 2 = = = = dxdxdxdxe e e e x x x x 2 2 2 2/ / / / 4 4 4 4 1 1 1 1 4 4 4 4 1 1 1 1 4 4 4 4 1 1 1 1 2 2 2 2 0 0 0 0 2 2 2 22 2 2 2 0 0 0 0 0 0 0 00 0 0 0 2 2 2 22 2 2 2/ / / /* * * *2 2 2 2/ / / / 0 0 0 0 * * * * 2 2 2 22 2 2 2 2 2 2 2 2 2 2 22 2 2 22 2 2 2 2 2 2 22 2 2 22 2 2 22 2 2 22 2 2 22 2 2 2 ) ) ) )( ( ( (: : : : . . . ., , , , , , , 1 1 1 1; ; ; ;0 0 0 0, , , , 1 1 1 1) ) ) )( ( ( () ) ) )( ( ( ( x x x x x x x xx x x x x x x xx x x xx x x x e e e ex x x x A A A AA A A A A A A A A A A Adxdxdxdxe e e eA A A Adxdxdxdxe e e e dxdxdxdxe e e eA A A Adxdxdxdxe e e eA A A AAeAeAeAedxdxdxdxx x x xx x x x = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = 归一化波函数归一化波函数归一化波函数归一化波函数 取最常用范围的取最常用范围的取最常用范围的取最常用范围的可以任意选择可以任意选择可以任意选择可以任意选择 Q 25 25 25 25 量子力学基础量子力学基础P255P255P255P255 25-6. 一维运动的粒子处于Axexp(-x)(x=0), 0(x0. 求(1)归一 化常量; (2)粒子坐标概率分布函数; (3)在什么位置附近, 找到粒子的概率最大. ) ) ) )/ / / / ! ! ! !( ( ( ( 0 0 0 0 1 1 1 1 + + + + = = = = n n n nx x x xn n n n n n n ndxdxdxdxe e e ex x x x . . . ., , , , , , , ,0 0 0 0, , , , , , ,/ / / /2 2 2 2, , , ,0 0 0 08 8 8 88 8 8 8) ) ) )3 3 3 3( ( ( ( , , , ,4 4 4 4) ) ) )( ( ( () ) ) )( ( ( () ) ) )( ( ( () ) ) )2 2 2 2( ( ( (; ; ; ;2 2 2 2) ) ) )1 1 1 1( ( ( ( , , , , 1 1 1 1 ) ) ) )2 2 2 2( ( ( ( 2 2 2 2 , , , ,/ / / / ! ! ! ! 1 1 1 1) ) ) )( ( ( () ) ) )( ( ( ( 2 2 2 22 2 2 24 4 4 42 2 2 23 3 3 3 2 2 2 22 2 2 23 3 3 3* * * *2 2 2 2/ / / /3 3 3 3 3 3 3 3 2 2 2 2 0 0 0 0 1 1 1 1 0 0 0 00 0 0 0 2 2 2 22 2 2 2 2 2 2 2 * * * * 0 0 0 0 * * * * 所以此点是极大点所以此点是极大点所以此点是极大点所以此点是极大点对应零概率解对应零概率解对应零概率解对应零概率解 唯一极值唯一极值唯一极值唯一极值 取最常用范围的取最常用范围的取最常用范围的取最常用范围的 = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = + + + + x x x xx x x xe e e ex x x xxexexexe dxdxdxdx dWdWdWdW e e e ex x x xx x x xx x x xx x x xWWWWA A A A A A A An n n ndxdxdxdxe e e ex x x x dxdxdxdxe e e ex x x xA A A AdxdxdxdxxexexexeA A A AAxeAxeAxeAxedxdxdxdxx x x xx x x x x x x xx x x x x x x x n n n nx x x xn n n n x x x xx x x xx x x x Q 25 25 25 25 量子力学基础量子力学基础P255P255P255P255 25-7. 试求宽度为0.1nm的一维无限深势阱中, n=1,2,3,10各态电子的能量. 若势阱宽度为1cm, 结果又当如何. . . . .1010101076767676. . . .3 3 3 3101010103760376037603760100100100100 , , , ,10101010384384384384. . . . 3 3 3 3101010104 4 4 4. . . .3383383383389 9 9 9, , , ,10101010504504504504. . . . 1 1 1 1101010104 4 4 4 . . . .1501501501504 4 4 4 1010101076767676. . . .3 3 3 3 ) ) ) )10101010( ( ( ( 6 6 6 6 . . . .37373737 2 2 2 2 , , , ,1010101010101010101010101 1 1 1 . . . .3760376037603760100100100100, , , ,4 4 4 4. . . .3383383383389 9 9 9, , , ,4 4 4 4. . . .1501501501504 4 4 4, , , ,6 6 6 6. . . .37373737 6 6 6 6. . . .37373737 / / / /10101010602602602602. . . .1 1 1 1 101010106024602460246024. . . . 0 0 0 0 101010106024602460246024. . . . 0 0 0 0 101010101 1 1 1. . . .0 0 0 01010101011111111. . . .9 9 9 98 8 8 8 10101010626626626626. . . . 6 6 6 6 2 2 2 2 , , , , 1 1 1 1 , , , ,1 1 1 1 . . . .0 0 0 0, , , , 2 2 2 2 10101010626626626626. . . .6 6 6 6 , , , ,1010101011111111. . . .9 9 9 9 , , , , 2 2 2 2 , , , , 2 2 2 2 , , , , 2 2 2 2 , , , ,0 0 0 0sinsinsinsin 0 0 0 0sinsinsinsin2 2 2 2, , , ,0 0 0 0, , , ,; ; ; ;0 0 0 0, , , ,0 0 0 0, , , , 0 0 0 0 2 2 2 2 , , , , , , ,) ) ) ) 2 2 2 2 ( ( ( (), ), ), ),( ( ( ( 2 2 2 2 ) ) ) )( ( ( (: : : :0 0 0 0 ) ) ) )( ( ( () ) ) )( ( ( () ) ) )( ( ( ( 2 2 2 2 ( ( ( () ) ) )( ( ( (: : : :, , , , ) ) ) )0 0 0 0, , , ,( ( ( ( ) ) ) )0 0 0 0( ( ( (0 0 0 0 ) ) ) )( ( ( (: : : : 1313131316161616 1 1 1 110101010 1414141416161616 1 1 1 13 3 3 3 1414141416161616 1 1 1 12 2 2 2 15151515 2 2 2 28 8 8 82 2 2 2 2 2 2 22 2 2 2 1 1 1 1 101010108 8 8 82 2 2 2 1 1 1 1101010101 1 1 13 3 3 31 1 1 12 2 2 21 1 1 1 19191919 17171717 17171717 2 2 2 2* * * *9 9 9 92 2 2 231313131 686868682 2 2 2 2 2 2 2 2 2 2 22 2 2 2 1 1 1 1 34343434 31313131 2 2 2 2 2 2 2 22 2 2 2 1 1 1 11 1 1 1 2 2 2 2 2 2 2 2 2 2 2 22 2 2 22 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 22 2 2 2 2 2 2 22 2 2 2 2 2 2 2 eVeVeVeVeVeVeVeVE E E EE E E E eVeVeVeVeVeVeVeVE E E EE E E EeVeVeVeVeVeVeVeVE E E EE E E E eVeVeVeV eVeVeVeV mamamama E E E Em m m mm m m mcmcmcmcma a a a eVeVeVeVE E E EE E E EeVeVeVeVE E E EE E E EeVeVeVeVE E E EE E E EeVeVeVeVE E E E eVeVeVeV eVeVeVeVJ J J J J J J J J J J J mamamama E E E En n n n nmnmnmnma a a a s s s sJ J J J kgkgkgkgm m m m mamamama E E E EE E E En n n n mamamama n n n n E E E Ea a a a mEmEmEmE n n n nwawawawawawawawa wawawawaA A A AAeAeAeAeAeAeAeAea a a ax x x xB B B BA A A Ax x x x mEmEmEmE w w w wBeBeBeBeAeAeAeAe mEmEmEmE x x x x x x x xm m m m x x x xE E E Ea a a ax x x x x x x xE E E Ex x x xx x x xV V V V m m m m p p p p x x x x t t t t i i i i x x x xa a a ax x x x a a a ax x x x x x x xV V V V n n n n iwaiwaiwaiwaiwaiwaiwaiwa x x x xx x x x iwxiwxiwxiwxiwxiwxiwxiwx x x x xx x x xx x x x = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =+ + + += = = = = = = = = = =+ + + += = = = = = = = = = = = = = = =+ + + += = = = = = = = h h h hh h Q QQ hh ); ); );0 0 0 0( ( ( (0 0 0 0) ) ) )( ( ( (: : : : 2 2 2 2 maxmaxmaxmax1 1 1 1 2 2 2 22 2 2 2 * * * * 1 1 1 11 1 1 11 1 1 1 2 2 2 2 2 2 2 2 2 2 2 22 2 2 2 1 1 1 11 1 1 1 2 2 2 2 2 2 2 2 2 2 2 22 2 2 22 2 2 2 2 2 2 2 处概率最大处概率最大处概率最大处概率最大 定态解定态解定态解定态解 一维无限深势阱一维无限深势阱一维无限深势阱一维无限深势阱 a a a a x x x xA A A AWWWW a a a a x x x x A A A AWWWW a a a a mamamama m m m m w w w wE E E En n n n mamamama n n n n E E E E mEmEmEmE w w w wa a a ax x x xwxwxwxwxA A A A x x x xa a a ax x x xa a a ax x x xx x x xV V V V n n n n x x x x = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = h h h h 25 25 25 25 量子力学基础量子力学基础P255P255P255P255 25-9. 设粒子在 一维无限 深势阱中 运动, 能 量量子数 为 n. 试求: (1) 粒子在 0-a/4区间 出现的概 率; (2) n为何 值时, 该概 率最大; (3) n 时该概率 的极限为 多少. . . . . 4 4 4 4 1 1 1 1 0 0 0 0 4 4 4 4 1 1 1 1 , , , ,0 0 0 0 2 2 2 2 2 2 2 2 sinsinsinsin 2 2 2 2 2 2 2 2 sinsinsinsin , , , ,) ) ) )3 3 3 3( ( ( ( ) ) ) )6 6 6 68 8 8 8( ( ( ( 1 1 1 1 4 4 4 4 1 1 1 1 , , , , , , ,3 3 3 34 4 4 4 , , , , 2 2 2 2 3 3 3 3 2 2 2 2 2 2 2 2 , , , , 1 1 1 1 2 2 2 2 sinsinsinsin, , , , 2 2 2 2 1 1 1 1 4 4 4 4 1 1 1 1 ) ) ) )2 2 2 2( ( ( ( ), ), ), ), 2 2 2 2 2 2 2 2 sinsinsinsin 4 4 4 4 1 1 1 1 ( ( ( () ) ) )1 1 1 1( ( ( ( ) ) ) ) 2 2 2 2 2 2 2 2 sinsinsinsin 4 4 4 4 1 1 1 1 ( ( ( () ) ) ) 4 4 4 4 2 2 2 2 sinsinsinsin 2 2 2 24 4 4 4 ( ( ( (2 2 2 2) ) ) ) 2 2 2 2 sinsinsinsin 2 2 2 24 4 4 4 ( ( ( (2 2 2 2 ) ) ) ) 2 2 2 2 2 2 2 2 coscoscoscos 2 2 2 2 1 1 1 1 ( ( ( (4 4 4 4sinsinsinsin4 4 4 4 2 2 2 2 1 1 1 1 : : : :, , , ,1 1 1 12 2 2 2) ) ) ) 2 2 2 2 coscoscoscos 2 2 2 2 1 1 1 1 ( ( ( (4 4 4 4sinsinsinsin4 4 4 4 , , , , , , ,sinsinsinsin2 2 2 2, , , , , , , 2 2 2 2 , , , , 2 2 2 2 ), ), ), ),0 0 0 0( ( ( (, , , ,sinsinsinsin2 2 2 2: : : : ); ); ); );0 0 0 0, , , ,( ( ( (); ); ); );0 0 0 0( ( ( (0 0 0 0) ) ) )( ( ( (: : : : ) ) ) )( )( )( )(4 4 4 4/ / / /, , , ,0 0 0 0( ( ( ( maxmaxmaxmax) ) ) )4 4 4 4/ / / /, , , ,0 0 0 0( ( ( ( maxmaxmaxmax) ) ) )4 4 4 4/ / / /, , , ,0 0 0 0( ( ( ( ) ) ) )4 4 4 4/ / / /, , , ,0 0 0 0( ( ( ( 2 2 2 24 4 4 4/ / / / 0 0 0 0 2 2 2 2 4 4 4 4/ / / / 0 0 0 0 2 2 2 2 4 4 4 4/ / / / 0 0 0 0 2 2 2 22 2 2 2 4 4 4 4/ / / / 0 0 0 0 * * * * ) ) ) )4 4 4 4/ / / /, , , ,0 0 0 0( ( ( ( 2 2 2 2 0 0 0 0 2 2 2 2 0 0 0 0 2 2 2 22 2 2 2 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 22 2 2 22 2 2 2 2 2 2 2 = = = = = = = = = = = = = = = + + + + + + + += = = =+ + + += = = = + + + += = = = = = = =+ + + += = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = n n n na a a a a a a a a a a a a a a a a a a a a a a aa a a aa a a a n n n nn n n na a a a a a a aa a a a n n n nn n n nn n n n x x x x WWWW n n n n n n n n n n n n n n n n k k k k WWWWk k k kk k k kn n n n k k k k n n n nn n n n n n n n WWWW n n n n n n n n WWWW n n n n n n n n n n n n n n n n a a a aa a a a A A A A a a a a x x x xn n n n n n n n a a a aa a a a A A A A dxdxdxdx a a a a x x x xn n n n A A A Adxdxdxdx a a a a x x x xn n n n A A A AdxdxdxdxWWWW a a a a A A A Aa a a aA A A Adxdxdxdx a a a a x x x xn n n n A A A Adxdxdxdx a a a a x x x xn n n n A A A A A A A A a a a a x x x xn n n n A A A A a a a a n n n n w w w wE E E En n n n mamamama n n n n E E E E mEmEmEmE w w w wa a a ax x x xwxwxwxwxA A A A x x x xa a a ax x x xa a a ax x x xx x x xV V V V 为任意整数为任意整数为任意整数为任意整数 选正的数值选正的数值选正的数值选正的数值 归一化求归一化求归一化求归一化求 定态解定态解定态解定态解 一维无限深势阱一维无限深势阱一维无限深势阱一维无限深势阱 h h 25 25 25 25 量子力学基础量子力学基础P255P255P255P255 ). ). ). ). 2 2 2 2 ( ( ( (0 0 0 0) ) ) )( ( ( (); ); ); ); 2 2 2 2 ,.,.,.,.,6 6 6 6 , , , ,4 4 4 4 , , , ,2 2 2 2( ( ( ( sinsinsinsin 2 2 2 2 ) ) ) )( ( ( (); ); ); ); 2 2 2 2 ,.,.,.,.,5 5 5 5 , , , , 3 3 3 3, , , , 1 1 1 1( ( ( (coscoscoscos 2 2 2 2 ) ) ) )( ( ( ( ). ). ). ). 2 2 2 2 ( ( ( ( , , , ,) ) ) )( ( ( (), ), ), ), 2 2 2 2 ( ( ( ( , , , ,0 0 0 0) ) ) )( ( ( (, , , ,. . . .1010101025252525 a a a a x x x xx x x x a a a a x x x xn n n n a a a a x x x xn n n n a a a a x x x x a a a a x x x xn n n n a a a a x x x xn n n n a a a a x x x x a a a a x x x xx x x xV V V V a a a a x x x xx x x xV V V V n n n n n n n nn n n n = = = = + + + + = = = = = = = = = = = = = = + + + + = = = = = = =+ + + + + + + += = = = = = = = = = =+ + + += = = = = = = = = = + + + + = = = = = = = + + + + = = = = + + + + = = = = = = =+ + + + + + + = = = =+ + + += = = = = = = = = =+ + + += = = = = = = = = = = =+ + + += = = = = = = = = = = = = = = =+ + + += = = = = = = = 为为为为粒子的波函数可以表示粒子的波函数可以表示粒子的波函数可以表示粒子的波函数可以表示 归一化条件归一化条件归一化条件归一化条件 又又又又 定态解定态解定态解定态解一维无限深势阱一维无限深势阱一维无限深势阱一维无限深势阱 Q h hh QQ hh ; ; ;2 2 2 2) ) ) )1 1 1 1( ( ( (; ; ; ;4 4 4 4 . . . . 3 3 3 3 4 4 4 4 6 6 6 6 . . . .13131313 , , , ,6 6 6 6 . . . .13131313 2 2 2 2) ) ) )4 4 4 4( ( ( ( 1 1 1 1 , , , , 1 1 1 1, , , , 1 1 1 1, , , ,2 2 2 2: : : : 2 2 2 2 1 1 1 1 2 2 2 2 2 2 2 2 4 4 4 4 2 2 2 2 0 0 0 0 1 1 1 11 1 1 1, , , , 1 1 1 1, , , ,2 2 2 2 25-11. 在氢原子中, 若主量子数 n=5, 角量子数可取哪些数值? 对于l=3, 轨道磁量子数可取哪些数值? 在氢原子中, 若主量子数 n, l=0,1,2,n-1; 今 n=5, l=0,1,2,3,4; 角量子数l, 轨道磁量子数ml=-l, ,+l; 今l=3, ml=-3,-2,-1,0,1,2,3 25-12. 试写出氢原子2,1,-1态的能量, 角动量, 和角动量的z分量的表达式 25-13. 试证量子数为 n, l 时, 电子分布的平均半径可由下式求出 并证明电子在氢原子基态中的平均半径为3a0/2(a0为玻尔半径). 0 0 0 0, , , , , , , ! ! ! ! , , , ,) ) ) )( ( ( (: : : : 1 1 1 1 0 0 0 00 0 0 0 2 2 2 2 3 3 3 3 0 0 0 0 1 1 1 1, , , ,1 1 1 1 , , , ,2 2 2 2 = = = = = = = = = = + + + + a a a an n n n a a a a n n n n dxdxdxdxe e e ex x x xdrdrdrdrR R R Rr r r rdrdrdrdrr r r rrwrwrwrwr r r r n n n n axaxaxaxn n n n nlnlnlnlnlnlnlnl 为正整数为正整数为正整数为正整数 . . . .* * * * 0 0 0 0 = = = = = = = drdrdrdrr r r rr r r r 是电子的平均半径是电子的平均半径是电子的平均半径是电子的平均半径分量的统计平均数值就分量的统计平均数值就分量的统计平均数值就分量的统计平均数值就电子出现位置对应径向电子出现位置对应径向电子出现位置对应径向电子出现位置对应径向 现的概率现的概率现的概率现的概率在空间任意位置电子出在空间任意位置电子出在空间任意位置电子出在空间任意位置电子出电子的波函数的模表示电子的波函数的模表示电子的波函数的模表示电子的波函数的模表示 25 25 25 25 量子力学基础量子力学基础P255P255P255P255 25-14.在氢原子中, 若主量子数 n=3, 它可能具有的状态数为多少? 18181818) ) ) )5 5 5 53 3 3 31 1 1 1( ( ( (2 2 2 2, , , , 5 5 5 52 2 2 2, , , , 1 1 1 1, , , , 0 0 0 0, , , , 1 1 1 1, , , , 2 2 2 2, , , , 2 2 2 2 3 3 3 3, , , , 1 1 1 1, , , , 0 0 0 0, , , , 1 1 1 1, , , , 1 1 1 1 1 1 1 1, , , ,0 0 0 0, , , ,0 0 0 0 2 2 2 2, , , , 1 1 1 1, , , ,0 0 0 0, , , ,3 3 3 3 = = = =+ + + + + + + = = = = = = = = = = = = = = = = = = = = = = = = = = = = 状态数总计状态数总计状态数总计状态数总计旋方向旋方向旋方向旋方向每种状态又可取两种自每种状态又可取两种自每种状态又可取两种自每种状态又可取两种自 状态数为状态数为状态数为状态数为 状态数为状态数为状态数为状态数为 状态数为状态数为状态数为状态数为 l l l l l l l l l l l l m m m ml l l l m m m ml l l l m m m ml l l l l l l ln n n n 25-15.设原子线度10-10m, 求原子中电子速度的不确定量. s s s sm m m mv v v vm m m mx x x x s s s sm m m m x x x x v v v vv v v vx x x x s s s sJ J J Jkgkgkgkgm m m mmvmvmvmvp p p pp p p px x x x / / / /1010101079797979. . . .5 5 5 5, , , ,10101010 ) ) ) )/ / / /( ( ( ( 1010101079797979. . . .5 5 5 5 , , , ,101010105275527552755275. . . .0 0 0 01010101011111111. . . .9 9 9 9 10101010055055055055. . . .1 1 1 1, , , ,1010101011111111. . . .9 9 9 9, , , , , , , 2 2 2 2 5 5 5 510101010 5 5 5 5 3434343431313131 3434343431313131 = = = = = = = = = = = = = = = Q h h 电子电子电子电子 25-16.小球质量为210-6kg, 确定其质心位置可精确测量到2m=2 10-6m , 按不确定关系求小球速度的不确定量. s s s sm m m ms s s sm m m mv v v v m m m mx x x xv v v vm m m mp p p ps s s sJ J J Jkgkgkgkgm m m mp p p px x x x / / / /1010101032323232. . . . 1 1 1 1) ) ) )/ / / /( ( ( ( 101010102 2 2 2101010102 2 2 22 2 2 2 10101010055055055055. . . .1 1 1 1 101010102 2 2 2, , , , , , ,10101010055055055055. . . .1 1 1 1, , , ,101010102 2 2 2, , , , 2 2 2 2 23232323 6 6 6 66 6 6 6 34343434 6 6 6 6343434346 6 6 6 = = = = = =

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论