计划周记进度检查表.xls

皮套圈座多轴钻孔专机设计[3D-SW]【9张CAD图纸和说明书】

收藏

资源目录
跳过导航链接。
皮套圈座多轴钻孔专机设计[3D-SW]【9张CAD图纸和说明书】.rar
计划周记进度检查表.xls---(点击预览)
毕业论文.doc---(点击预览)
开题报告与外文翻译.doc---(点击预览)
加工示意图.dwg
右多轴箱.dwg
夹具.dwg
尺寸联系总图.dwg
工序图.dwg
左多轴箱.dwg
底座.dwg
机加工图.dwg
液压滑台.dwg
零件三维图.SLDPRT
压缩包内文档预览:
预览图 预览图
编号:15103799    类型:共享资源    大小:2.70MB    格式:RAR    上传时间:2019-02-27 上传人:俊****计 IP属地:江苏
40
积分
关 键 词:
3D-SW 9张CAD图纸和说明书 皮套圈座多轴钻孔专机设计
资源描述:

摘  要

随着自动化应用的逐步提高,组合机床越来越多的出现在现代工厂中,组合机床是以通用部件为基础,配以工件特定外形和加工工艺设计的专用部件和夹具,组成的半自动或自动专用机床。它一般采用多轴,多刀,多工序,多面或多工位同时加工的方式,生产效率比通用机床高几倍至几十倍。由于通用部件已经标准化合系列化,可根据需要灵活配置,能缩短设计和制造周期。因此,组合机床兼有低成本和高效率的优点,在大批量生产中得到广泛应用,并可用以组成自动生产线。

本次设计为皮套圈座钻孔专用机床,同时完成3个孔的加工。主要有以下几个方面:

1.方案的制定,根据提供的零件图,通过相关材料分析制定可行性方案并拟定加工工艺规程;

2.“三图一卡”:工序图、加工示意图、尺寸联系图的绘制以及生产率计算卡的计算,根据要求设计图纸;

3.主轴箱结构的设计,包括动力系统、传动系统的制定,轴的设计,齿轮的设计,轴承的选择,润滑系统的制定;

4.零件图的绘制,包括轴、齿轮;

5.说明书的撰写。


    关键词:组合机床;组合机床;三图一卡


Abstract

With increasing automation applications, combined machine tool more and more appear in modern factories, the combination of more occasions based on general parts, match with workpiece specific shape and process design of special components and fixtures, composed of semi-automatic or automatic special machine. It usually adopts the multiaxial, knife, processes, and multi-faceted or multistage and processing, production efficiency than general machine high several times or more. Due to the common parts have standard series, can according to the combined flexible configuration, can shorten the cycle of design and manufacture. Therefore, the combination machine has the advantages of low cost and high efficiency, in large, mass production is widely used, and the automatic production line can be used to composition.

    The design for the leather seat drilling machine, the processing at the same time to complete the 3 hole.This design mainly in the following aspects: 

1. According to the formulation of programmes, providing the parts drawing through relevant material analysis, the feasibility plan and plan formulated processing procedures; 

2. "three graph one card" : process graph, processing schemes, size contact drawing and productivity calculation according to requirements of calculation, card design drawings; 

3. Spindle box structure design, including power system and transmission system, the design of the formulation of shaft, the gear design, bearing the formulation of choice, lubricating system; 

4. Component drawing, including shaft, gear; 

5. Written instructions. 


Key words: Unit built machine tool; Spindle box; Three diagram a card 

 

目  录

摘  要 III

Abstract IV

目  录 V

1 绪论 1

  1.1 课题的来源及意义 1

  1.2 组合机床及特点 1

  1.3 国内外该研究技术现状 1

2 组合机床总体方案设计 2

  2.1 组合机床的设计步骤 2

  2.2 编制工艺规程的原始资料 2

    2.2.1 被加工零件图一张 2

    2.2.2 零件机械加工工艺路线的拟定 4

    2.2.3 工序的加工余量及切削刀具的选择 5

    2.2.4 切削刀具的选择 5

  2.3 组合机床切削用量选择及计算 5

  2.4 确定机床的配置形式 7

  2.5 “三图”的编制 8

    2.5.1 被加工零件工序图 8

    2.5.2 加工示意图 9

    2.5.3 机床联系尺寸总图 11

3 左多轴箱的设计 13

  3.1电动机的选择 13

  3.2 绘制多轴箱设计原始依据图 13

  3.3 确定主轴结构型式及齿轮模数 14

  3.4 多轴箱传动系统设计 14

    3.4.1 拟定传动路线 14

    3.4.2 确定传动轴位置及齿轮齿数 15

    3.4.3 绘制传动系统图 16

  3.5 绘制多轴箱总图 16

4 右多轴箱设计 21

  4.1 电动机的选择 21

  4.2 绘制多轴箱设计原始依据图 21

  4.3 确定主轴结构型式及齿轮模数 21

  4.4 多轴箱传动系统设计 22

    4.4.1 拟定传动路线 22

    4.4.2 确定传动轴位置及齿轮齿数 23

    4.4.3 绘制传动系统图 24

  4.5 液压滑台结构的设计 25

5 夹具的设计 26

  5.1 定位基准的选择: 26

  5.2 夹紧方案的确定 26

  5.3 夹紧力的计算 26

  5.4 定位误差分析 26

  5.5 组合机床“一卡”的编制 27

6 结论 29

  6.1 结论 29

  6.2 不足之处及未来展望 29

致  谢 30

参考文献: 31


1 绪论

1.1 课题的来源及意义

    无锡市江泰机械制造厂是一家专业从事外协件加工的企业,公司现采用加工

中心加工纺织机械零件--皮圈架座上的三个孔,工装时间长,加工成本高,效率不高。因而需要设计一台专机达到提高工作效率,降低生产成本,同时保证加工质量的目的。

传统机床只能对一种零件进行单刀,单工位,单面,单轴加工,成产效率低而且加工精度不稳定,组合机床能够对一种或几种零件进行多刀、多面、多轴、多工位加工。在组合机床上可以完成钻孔、扩孔、铣削磨削等工序,生产效率高,加工精度稳定。本课题针对皮套圈座设计专用多孔钻机,有利于提高大批量的生产效率,提高加工精度稳定性,节约资源。从而可以提高企业业内的竞争力与生产效率[1-3]。


内容简介:
编号毕业设计(论文)相关资料题目: 皮套圈座多轴钻孔专机设计 信机 系 机械工程及自动化专业学 号: 学生姓名: 指导教师: (职称:副教授 ) (职称: )2013年5月25日目 录一、毕业设计(论文)开题报告二、毕业设计(论文)外文资料翻译及原文三、学生“毕业论文(论文)计划、进度、检查及落实表”四、实习鉴定表毕业设计(论文)开题报告题目: 皮套圈座多轴钻孔专机设计 信机 系 机械工程及自动化 专业学 号: 学生姓名: 指导教师: (职称:副教授 ) (职称: )2012年11月14日 课题来源无锡市江泰机械制造厂是一家专业从事外协件加工的企业,公司现采用加工中心加工纺织机械零件-皮圈架座上的三个孔,皮套圈座是纺织机械上一个异形件,加工精度高,用普通机床加工较困难,工装时间长,加工成本高,效率不高。因而需要设计一台专机达到提高工作效率,降低成本。科学依据(包括课题的科学意义;国内外研究概况、水平和发展趋势;应用前景等)普通机床加工零件时,不仅工人劳动强度很大,效率也不高,而且不利于保证产品加工精度。专用机床是按高度工序集中原则设计的,即在一台机床上可以同时完成许多同一种工序或多种不同工序的加工,它可以同时用多个刀具进行切削,机床的辅助动作实现了自动化,结构比普通机床简单,提高了生产效率。专用机床与普通机床比较,具有以下特点:专用机床上的通用部件和标准零件约占全部机床零、部件总量的70%到80%,因此设计和制造的周期短、投资少、经济效益好。由于专用机床采用多刀加工,并且自动化程度高,因而比普通机床生产率高,产品质量稳定,劳动强度底。 专用机床的通用部件是经过周密的设计和长期生产实践考验的,又有专门厂家成批制造,因此结构稳定,工作可靠,使用和维修方便。 专用机床易于联成专用机床自动线,以适应大规模的生产需要。 随着社会经济的发展,机械制造业也愈来愈受到人们的关注。在皮套圈座方面,生产效率不仅严重地威胁着企业的经济情况,而且大量的工作危害着生产者的健康,立式多轴钻孔专机有效的缓解了这一现象。钻孔的要求越高,工人的工作量也就越大,针对手工钻孔的技术要求也就越高,工人保持长期的精力积中,容易出现生产安全事故,危害性较大.针对这一情况,各个企业采用了不同的方案,包括使用单一的钻床来减轻劳动者的疲劳度 ,这些措施在一定改善员工的作业要求,但还不能满足要求。因此,研究合适的皮套圈座立式多轴钻孔专机,降低了工作强度,特别是减缓工人的精力过度集中,对于防止企业的生产事故有明显的效果和保护作业人员的生命安全有十分重要的意义。 多轴钻孔最早出现在日本地区,后经台湾传入大陆。距今已有二十年的历史。 随着国家不断的加大对外开放,经济受到了剧烈的竞争,生产效率成为各个公司缓解压力的关键点,皮套圈座多轴钻孔专机面临着更广阔的应用空间。研究内容皮套圈座多轴钻孔专机的工作原理,结构组成,以及工作特点,控制系统;了解该系统机构的制造工艺,控制系统,安全装置的工作原理。 在前几年,手动钻孔机应用在我国较为广泛,随着竞争的不断加剧,机械加工精度要求不断地提高,手工钻孔逐渐被淘汰.单轴钻孔专机的出现越来越频繁,世界的一体化不断加剧,多轴钻孔专机取代了单轴钻孔专机受到越来越广的应用.随着多轴钻孔的兴起,多轴钻孔专机大体上分为两大类,可调式和固定式多轴钻床按其加工件的硬度来划分,可分为中切削型、重切削型和强力超重切削型三类。中切削适用于铝、镁、铜等HB150以下的工件。重切削适用于孔数大于10个的软质件或7孔以下的钢、铁等HB265以下的工件。强力超重切削型试用于265HB330钢、铁等强硬度工件。总之,综合考虑各种情况,得出一个最优设计方案,设计一个符合实际情况的皮套圈座立式多轴钻孔专机。拟采取的研究方法、技术路线、实验方案及可行性分析通过对多轴钻孔专机的实物研究和要加工产品的市场研究和产品分析,总结得出皮套圈座多轴钻孔专机的基本结构,工作方式与原理.然后根据考察的结果,再查阅相关书籍,确定基本的设计参数,进行初步的三维建模。交由指导老师检查,修改.完成后,再对主要载荷部件进行校核.最后出主要零件的零件图,编写设计说明书。可行性分析:我国多轴钻床行业2010年发展报告指出2010年多轴钻床行业总产值上年增长20%,出口合同额比上年增长15%。目前,国内已有众多厂家在进行皮套圈座多轴钻孔专机等相关产品的生产研发工作,如无锡市,数家公司完成对此的研发,并成功用于产品的加工.由此可见,该设计方案切实可行。研究计划及预期成果研究计划:2002年10月12日-2002年12月25日:按照任务书要求查阅论文相关参考资料。2013年3月8日-2013年3月14日:按照要求修改毕业设计开题报告。2013年3月15日-2013年3月21日:学习并翻译一篇与毕业设计相关的英文材料。2013年4月12日-2013年4月25日:机床设计。2013年4月26日-2013年5月21日:毕业论文撰写和修改工作。预期成果:此多轴钻孔专机的研究成功可以有效的降低工作强度,主要体现在下面几个方面:(1)科学钻孔,降低对员工的技术要求。 (2)提高效率,增加经济效益.。今年来我国生产事故不断,造成重大人民生命财产的损失,其中很多就是由于长时间的精力高度集中引起的。特色或创新之处近年来我国皮套圈座多轴钻孔专机有了较大的发展。动力系统,传动系统,钻孔的质量和技术水平都有较大的提高。特别在孔的精度上,达到了更高的水平。在其它方面均有较大的突破。 我设计的皮套圈座多轴钻孔专机的特色也在于此,即注重实用性和经济性;效率高;同时性价比高,成本低。已具备的条件和尚需解决的问题已具备的条件:设计过程中所需要的各种软硬件资源和相关产品实物照片。尚需解决的问题:相关文献资料的缺乏,对一些结构设计部分的具体设计指导,以及三维软件的高级运用技巧。指导教师意见 指导教师签名:年 月 日教研室(学科组、研究所)意见 教研室主任签名: 年 月 日系意见 主管领导签名: 年 月 日英文原文Small-hole drilling in engineering plastics sheet and its accuracy estimation Hiroki Endo and Etsuo MaruiAbstractIn recent manufacturing processes, the small diameter hole drilling process is frequently used owing to its good characteristics. The drilling process can easily be adapted to wide variations in lot size, processing accuracy, processing spot patterns where holes are made, and so on. Many machine elements, which have small diameter holes, are manufactured using engineering plastics of superior material and machining properties. However, it is not easy to drill holes with a diameter smaller than 1mm, in recent machining technology as well. In this report, 1-mm diameter holes are drilled on two engineering plastics sheets and their drilling accuracy is discussed. Keywords: Small diameter hole; Drilling; Engineering plastics; Machining accuracy 1. IntroductionProcessing of small diameter holes is done in various materials, corresponding to the trend of downsizing or high accuracy in parts incorporated into electronic equipments, medical instruments or textile machineries. Many techniques are put to practical use, including drilling, ultrasonic machining, electric discharge machining, electrolytic machining, laser beam machining, electron beam machining, fluid or abrasive jet machining, and chemical blanking. Depending on the workpiece material, the machining accuracy, and the lot size, the best process for making holes of small diameter may be appropriately selected. Within these various machining processes, the drilling process can readily deal with a wide variety of machining conditions. However, there are some difficult problems in drilling holes smaller than 1mm in diameter. For example, a large load cannot be put on small drills, owing to their low strength and rigidity. Thus, the feed rate per unit drill rotation must be set small. The removal of drilled chips is difficult owing to the small drill flute area. In many cases, engineering plastics are used in making various machine parts because they are light and have superior specific strength (that is, the ratio of tensile strength to density) compared with carbon steel. Also, the material cost of engineering plastics is competitive and their machinability is fairly good. With these points as background, the orthogonal cutting of engineering plastics was investigated 1 and it was suggested here that the viscoelastic properties of engineering plastics have some effects on the magnitude of cutting force and the surface roughness of machined surfaces. There is a review paper 2 regarding the machining of engineering plastics. In this review paper, drilling process was also treated. It was pointed out that the heating up of the workpiece due to build-up of swarf on drill flutes is an obstacle to the drilling process of engineering plastics. Recently, some experiments have been attempted on drilling glassfiber-reinforced engineering plastics sheets 3 and 4, and the thrust force and torque during drilling have been measured. In these papers, it was reported that the delamination phenomenon decreases the drilled hole integrity, when holes of about 5-mm diameter are drilled. However, the investigation on the accuracy in small hole drilling of engineering plastics is left pending. Then in this paper, small diameter holes of 1mm are drilled in two typical engineering plastics sheets, and the effect of spindle speed and feed rate on the accuracy (radius error) is estimated. 2. Workpiece materialsTwo typical engineering plastics sheets, polyacetal (POM) and polyetherimide (PEI), were drilled. The materials properties are listed in Table 1. Table 1. Material properties of workpiece engineering plastics PerformanceUnitPOMPEISpecific gravity1.411.27Rate of water%0.220.25Melting pointC165210Coefficient of linear thermal expansioncm/cm/C91055.6105Tensile strengthMPa61124Tensile extension (Yielding point)%4023Bending strengthMPa89157Bending elasticityGPa2.603.07Compressive strengthMPa103118Izote impact valueJ/m7442Rockwell hardnessM scale119127Polyacetal is a crystallized engineering plastics material. The main raw materials are acetal co-polymer and homo-polymer. POM has good fatigue properties and machinability. Many cams, guides and liners are made of POM. Very high accuracy is needed in these machined parts. PEI is an amorphous engineering plastic having superior thermal resistance characteristics. Special electrical parts, for example, electric insulators, connectors, are made of PEI, which is superior in mechanical strength but inferior in machinability to POM. The workpiece size was: length 100mm, width 50mm and thickness 0.8mm. 3. Experimental apparatus and procedureThe drilling machine used is for small diameter holes, and is equipped with an automatic feed mechanism. A high-frequency induction motor positioned at the uppermost position of the main spindle drives the spindle. Maximum spindle speed is 12,500rpm. The net spindle speed of the spindle during the drilling is measured by a tachometer, which counts number of the laser beam reflected from a reflective tape pasted on the scroll chuck. A servomotor for drill feed drives the feed motion of the spindle. The feed is stepless, and a dial gauge equipped at the spindle head measures the length of the drill motion in the spindle axis direction. A stopwatch was used to measure the time needed for this length. The ratio of the moved length to the time is the substantial feed rate per unit time. The spindle speed was varied between 1250 and 12,500rpm. And also the feed rate per unit time was varied between 0.405 and 1.986mm/s. Spindle speed was varied in keeping with the feed rate per unit time. Hence, the feed rate per unit drill rotation became small with the increase in the spindle speed of the drill. The drill spindle end is attached to the scroll chuck. The drill used here is a conventional twist drill made of high-speed steel with a diameter of 1mm. In some extra experiments, a 0.3mm-diameter drill was also used. Such drills have no surface treatment. A dial gauge estimates deflection accuracy of the drill on the scroll chuck during rotation. Extreme care was taken so that the drill deflection was smaller than 5m. The same drill made five holes under the cutting condition of the same spindle speed and the same feed rate. Another drill was used in the drilling under another cutting condition. Of course, the size accuracy of these drills exists within the above-mentioned size scattering. Any evidence of the wear of drills and the build-up of swarf on drill flutes were not recognized after five holes drilling. Formerly mentioned workpiece of engineering plastics were set on the base of the drilling machine by clamping bolts. Dry cutting without fluid was performed. 4. Calculation of drilled hole shapesThe 1-mm diameter holes drilled on engineering plastics sheets by the process described above are not geometrically true circles, but have a small radial deviation. Shape accuracy of the drilled holes is estimated by the following process. An optical microscope equipped with digital measuring device measures the shape of the drilled hole. The cross wire of the microscope is set at the circumference of the hole. Then, the coordinates (x,y) of the hole circumference are read. Dividing the circumference into 18 equal parts, the same measurements are then repeated on each spot on the circumference. Using these 18 sets of measured qualities, the equation of the circle that fits closely to the drilled hole is calculated. This is called a least square circle, and in the calculation, the least squares method is applied. The equation of the least square circle is assumed as follows:x2+y2+Ax+By+C=0 (1)Owing to the shape error of the hole, the right hand side of Eq. (1) does not become zero when the above-mentioned measured qualities (xi,yi) are substituted. The residual in this case is vi and the following equation is obtained: (2)Here, the coefficients A, B, C in Eq. (1) are determined as the sum of the squared values of the residual vi becomes minimum. Values of these coefficients are obtained by solving the following simultaneous linear equations. In the calculation, N=18.(3)Moreover, the coordinates (x0,y0) of the center of the least square circle and its radius rm are obtained as follows:Corresponding to the above process, the least square circles are described. An example is shown in Fig. 1, where the workpiece material is PEI, drill diameter: 1mm, spindle speed: 12,500rpm, and feed rate: 0.405mm/s. The least square circle is indicated by the broken line. 5. Estimation of machining accuracy and experimental resultsMachining accuracy of the drilled holes is estimated by the radius error obtainable from the least square circles. The calculation process of the radius error is given here. Radius ri at the each measuring spot (xi,yi) is obtained from the coordinate of the least square circle center (x0,y0) of Eqs. (4) and (5) as follows: (7) Then, the radius error is calculated by the following equation. The parameter rm in the equation is the radius of the least square circle given by Eq. (6).ri=rirm (8) And the position of that measuring spot on the circle is represented by the following angle i. (9)The relation between ri and i obtained from the above method is shown in Fig. 2 as a radius error curve. The drilling conditions in this figure are the same as those of Fig. 1 Three concavities and convexities are recognized on the circumference. Then, the drilled hole shape is approximately triangular. Similar results were obtained in other workpiece materials for other drilling conditions. Furthermore, it is seen that the circumference of the drilled hole exists in the vicinity within 0.02mm from the least square circle. This drilled hole shape is similar to that produced by the so-called drill walking phenomenon 5. The radius of the least square circle is slightly larger than that of the drill. The difference between them is about 10m. Result of Fig. 2 is obtained in the measurement at the drill entrance into workpiece. Small burr was formed at the drill exist and the accuracy measurement could not carry out as it is. Then, the burr was forcibly removed and the accuracy was measured. Almost the same accuracy was confirmed, because the workpiece is thin (0.8mm thickness). These radius errors are rearranged as functions of the spindle speed or the feed rate for every workpiece material. The results are given in Fig. 3, Fig. 4, Fig. 5 and Fig. 6. Error bars indicate the distribution range of the experimental data. The radius error becomes small hyperbolically with the increase in the feed rate and becomes large linearly with the spindle speed. Small diameter drills were used in this experiment and their bending rigidity is low. Rotational cutting speed is almost zero near the chisel point. At that point, the drill has only a small axial velocity corresponding to the drill feed motion. Accordingly, the rate of penetration 6 is extremely small when the feed rate is small. As mentioned above, the walking phenomenon occurs owing to small errors in drill size. This phenomenon is compounded with the effect of small rate of penetration when small feed rate and large spindle speed are applied. Hence, the positioning accuracy of the drill point against the workpiece is not very good at small feed rate and large spindle speed. As a result, it is supposed that the radius error becomes large. For example, the rate of penetration, that is the feed rate per unit drill rotation, is about 2m when the drill rotation speed is 12,500rpm and the feed rate is 0.405mm/s. The rate of penetration is about 100m when the drill spindle speed is smallest (1250rpm) and the feed rate is largest (1.986mm/s). One reason for the radius error worsening when the rotation speed becomes high is that chatter 6 related to the drill dynamic characteristics is possible. However, the small drill size errors and the relative drop in the feed rate per unit drill rotation corresponding to the spindle speed increase have a large effect on the radius error. In conclusion, it is important to drill a small hole in the drilling condition so as to maintain a sufficiently high feed rate per unit drill rotation. An example of superposition of the results of POM and PEI is given in Fig. 7. It is recognized in this figure that the radius accuracy in the drilling of PEI is slightly inferior to that of POM. PEI is a kind of supper engineering plastics. PEI is superior to POM in tensile strength, compressive strength, bending strength, bending elasticity and Rockwell hardness, as seen in Table 1. Owing to this, the machinability of PEI may be worse than that of POM and the result of Fig. 7 regarding the radius error was be obtained. 6. Concluding remarksSmall holes were drilled in two engineering plastics sheets POM and PEI using a drill 1mm in diameter. Drilling can be done on both workpiece materials. Reading the drilled hole shape by optical micrometer, and calculating the least square circle, the drilling accuracy (radius error) can be estimated. The radius error becomes worse when the drill feed rate is small and the spindle speed is large. The feed rate per unit drill rotation is relatively small when the spindle speed is large. Hence, it is supposed that the positioning accuracy of the drill against the workpiece is not good, and that the radius error becomes worse under the drilling conditions in which the feed rate per unit drill rotation is small. From this fact, it is desirable that small diameter holes be drilled in the condition in which the feed rate does not become low.References1 K.Q. Xiao and L.C. Zhang, The role of viscous deformation in the machining of polymers, International Journal of Mechanical Science 44 (2002), pp. 23172336. 2 M. Alauddin, I.A. El Baradie and M.S.J. Hashmi, Plastics and their machining: a review, Journal of Materials Processing Technology 54 (1995), pp. 4060. 3 W.-C. Chen, Some experimental investigations in the drilling of carbon fiber-reinforced plastic (CFRP) composite laminates, International Journal of Machine Tools and Manufacture 37 (1997), pp. 1097110.4 E. Capello, Workpiece damping and its effect on delamination damage in drilling thin composite laminates, Journal of Materials Processing Technology 148 (2004), pp. 186195. 5 M. Tsueda, Y. Hasegawa and H. Kimura, On walking phenomenon of drill, Transactions of the JSME 27 (1961), pp. 816823. 6 D.F. Galloway, Some experiments on the influence of various factors on drill performance, Transactions of the ASME 79 (1957), pp. 191231. 中文译文小孔钻在工程塑料片材方面及其精度估算摘要在最近的制造流程中,小直径钻孔由于其良好的特性经常被使用。钻孔工艺能够轻易的适用于大部分尺寸,加工精度,加工点孔,等等。许多有小直径孔的机械零件,是使用优质金属材料和机器特性制造出来的。然而,在最近的加工技术中,钻一个直径小于1 毫米的孔也是不容易的。在这份报告中,直径为1毫米的孔在两个工程塑料板材的钻孔和钻孔的精度进行了讨论。关键词:小直径孔;钻孔;工程塑料;加工精度1.简介 在各种材料中都存在小直径孔的加工,根据数据趋势或从电子设备中反映零件部分的高精度,医疗器械、纺织机械。许多技术投入实际使用,包括钻孔,超声加工,电火花加工,电解加工,激光束加工,电子束加工,液体或磨料喷射加工,化学消隐。根据工件材料,加工精度,和尺寸的大小,可以选择小直径钻孔的最佳工艺。在这些不同的加工工艺中,钻孔工艺可以很容易地处理大部分的加工情况。 但是,钻孔直径小于1毫米时有一些困难的问题。例如,一个大的负载不能放在小钻头上,由于其较低的强度和刚度。因此,每单位钻孔旋转进给速度必须设置小。由于其小的钻孔区域,钻屑的去除是一个困难的问题。 在许多情况下,与碳钢相比工程塑料被使用用于制造各种机械零件(即,拉伸强度与密度的比值)是因为他们轻和具有较高的强度。同时,工程塑料材料成本拥有竞争性,其加工性能较好。 以这些问题为背景,研究了工程塑料的正交切削 1 和建议在工程塑料的弹性性质切削力的大小和加工表面的表面粗糙度的影响。有一份关于工程塑料加工的审查报告2。在这篇综述报告中,钻孔过程也被关注。指出出对于工程塑料钻孔由于钻孔过程中的切屑的累计而导致的材料过热。最近,一些实验已经尝试在钻孔中使用玻璃纤维来增强塑料片材 3 ,钻孔过程中的轴向力和扭矩进行了测量。在这些论文中,当孔直径约5毫米,分层现象会减少钻孔的完整性。但是,在工程塑料小钻孔精度调查尚未解决。 在这个报告中,1毫米的小直径孔在两个典型的工程塑料板材的钻孔,主轴转速和进给速度对精度的影响(半径误差)估计。2.工程材料在两个典型的工程塑料聚甲醛(POM)和聚醚酰亚胺(PEI)。材料特性列于表1。表1工程塑料加工件的材料特性性能单位POMPEI比重1.411.27水率%0.220.25 熔点C165210 线性热膨胀cm/cm/C91055.6105拉伸强度MPa61124拉伸(屈服点)%4023弯曲强度MPa89157弯曲弹性模量GPa2.603.07抗压强度MPa103118丝兰冲击值J/m7442 罗克韦尔硬度M scale119127 聚甲醛是一种明确的工程塑料材料。主要原料是缩醛共聚物和均聚物。聚甲醛具有良好的疲劳性能和加工性能。许多凸轮,导板和线路是聚甲醛制成的。非常高的精度是在这些加工零件所需要的。PEI是具有优良的热特性的无定形工程塑料。特殊的电气部件,例如,绝缘子,连接器,是由PEI制成的,它在较好的机械强度而机械加工性能不如POM优越。工件尺寸为:长100毫米,宽50毫米,厚0.8毫米。3.试验设备和程序 钻孔机用于小直径的孔,并配有自动送料机构。位于主轴的最高位置,驱动主轴高频感应电动机。最大主轴转速为12500 RPM。通过转速表测量钻孔时主轴的钻速,计算数量的激光束反射胶带粘贴在三爪卡盘。 伺服电机通过钻头进给驱动主轴进给运动。进给是无级的,百分表安装在主轴头上计算在主轴轴线方向的运动长度。秒表是用来测量这个长度所需的时间。长时间的移动率是每单位时间的实质性的进料速率。 主轴转速变化在1250和12500转之间。而且每单位时间的进料速率变化0.405和1.986毫米/秒。主轴转速保持在每单位时间的进料速率之间变化。因此,每单位钻旋转进给率变小,在钻主轴速度增加。 钻床主轴一端连接到三爪卡盘。这里使用的钻机是由高速钢制成的直径为1毫米常规麻花钻。在一些额外的实验中,0.3毫米直径的钻头也会被使用。这类钻孔没有表面处理。在旋转中用百分表估计在三爪卡盘钻偏转精度。特别注意使钻挠度小于5M。 同样的钻五孔的主轴转速和进给速度相同的切削条件下。另一个钻用于钻一个切削条件下。当然,这些演习的尺寸精度存在于上述尺寸的散射。任何证据表明钻头的磨损和切屑在五孔钻后无法辨认。 以前提到工程塑料工件通过夹紧螺栓的安装在钻机底座的。没有切削液。4.钻孔形状的计算 1毫米直径的钻孔工程塑料片由上述过程不是几何真界,但有一个小的径向偏差。钻出的孔的形状精度是通过以下过程估计。 光学显微镜配备数字测量装置测量钻孔的形状。显微镜的十字线设置在孔的圆周上。然后,孔的坐标(x,y)在圆周上读。把圆周分成18等份,然后重复相同的测量是在每个点在圆周上。用这18组实测的坐标,圆周的方程,紧密地配合到钻孔的计算中。这就是所谓的最小二乘圆,并在计算中,应用最小二乘法。最小二乘圆方程如下: x2
温馨提示:
1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
2: 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
3.本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
提示  人人文库网所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
关于本文
本文标题:皮套圈座多轴钻孔专机设计[3D-SW]【9张CAD图纸和说明书】
链接地址:https://www.renrendoc.com/p-15103799.html

官方联系方式

2:不支持迅雷下载,请使用浏览器下载   
3:不支持QQ浏览器下载,请用其他浏览器   
4:下载后的文档和图纸-无水印   
5:文档经过压缩,下载后原文更清晰   
关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

网站客服QQ:2881952447     

copyright@ 2020-2025  renrendoc.com 人人文库版权所有   联系电话:400-852-1180

备案号:蜀ICP备2022000484号-2       经营许可证: 川B2-20220663       公网安备川公网安备: 51019002004831号

本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知人人文库网,我们立即给予删除!