外文翻译--机电一体化概述.doc

三坐标数控铣床设计【6张CAD图纸和说明书】

收藏

压缩包内文档预览:
预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图
编号:15203437    类型:共享资源    大小:818.20KB    格式:RAR    上传时间:2019-02-28 上传人:俊****计 IP属地:江苏
40
积分
关 键 词:
6张CAD图纸和说明书 数控铣床设计【 3张CAD图 三坐标数控铣床 设计【6张CAD图纸】 三坐标数控铣床设计 CAD图纸和 6张CAD图纸 张CAD图纸和说明书】
资源描述:

中文摘要


三坐标数控铣床设计


毕业设计是在原有普通铣床的基础上,对其进行改造,成为三坐标数控铣床。该机床能通过三轴联动,实现曲线直线等不同的加工路线。

所设计的三坐标数控铣床,三个坐标方向的移动均由步进电机带动,主轴电机采用交流电机,所有电机均由单片机进行控制。设计主要对数控铣床的机构进行设计,了解单片机的工作原理,主要有以下几个方面:X、Y,Z工作台的传动机构设计,主要是滚珠丝杠的运用;机床整体结构的设计,了解优缺点,充分考虑主要矛盾,择优选取;单片机控制系统的设计,进一步熟悉其应用。

在数控机床系统中,加工精度和加工可靠性是伺服系统决定的,本文对普通铣床的数控化改造进行了分析和设计,通过对普通铣床的数控化改造,提高了普通铣床的加工能力和加工范围,节省了直接购买机床的部分资金,具有很好的经济效益。


[关键词] 铣床, 数控, 改造, 三坐标


英文摘要



Three Coordinate NC Milling Machine Design


Basing on the common milling machine,this thesis reconstructs it and turns it to a NC milling with three coordinate.This reconstructed machine can realize cure line and straight line machining pathway by three axis linkage。

The reconstructed milling machine movements along x,y,and Z are drove by step driver,the AC motor is used in principal axis. All above motors are controlled by single chip.This thesis focuses on designing the mechanism of the and mastering the single chip working principle.  Which is including to the drive system design of X,Y,Z workbench , the whole machine construction design and the control system design of single chip. 

In a NC machine tool system, the precision and reliability of the machine tool depend on the serve system. Through the reconstructing ,analyzing and designing of a common milling machine serve system, the machining ability can be improved ,and a big sum money may be saved, the company will benefit from it.


[Keywords] Milling Machine,  NC ,  Reconstruct, Three Coordinate


目录

中文摘要 1

英文摘要 2

目录 3

前言 1

第1章  概论 2

1.1  数控机床的产生及发展 2

1.2  数控机床的组成及分类 2

1.3 数控机床的特点及应用范围 4

第2章  设计主要参数及基本思想 5

2.1 课题要求 5

2.2  设计原则 5

2.3  总结构设计 5

第3章  立式数控铣床的设计和计算 8

3.1主传动系统的设计 8

3.2  主轴系统计算 11

3.3  进给伺服系统的设计 13

3.4  进给传动的计算 15

第4章  微机控制系统的设计 25

4.1 微机控制系统组成及特点 25

4.2  微机控制系统设备介绍 25

4.3  程序部分 29

致 谢 33

参考文献 34

 

前言


随着人工智能在计算机领域的渗透和发展,数控系统引入自适应控制﹑模糊系统和神经网络的控制机理,不但具有自动编程﹑前馈控制﹑模糊控制﹑学习控制﹑自适应控制﹑工艺参数自动生成﹑三维刀具补偿﹑运动参数动态补偿等功能,而且人机截面极为友好,并且有故障诊断专家系统使自诊断和故障监控功能更趋完善。伺服系统智能化的主轴交流驱动和智能化进给伺服装置,能自动识别负载并自动优化调整参数。直线电机驱动系统以使用化。

用数控铣床加工零件时,首先应编制该零件的加工程序,这是数控铣床的工作指令。将加工程序输入数控装置,再由数控装置控制机床主运动的变速﹑启动﹑停止﹑进给运动的方向﹑速度和位移量,以及工件装夹和冷却润滑的开关等动作,使刀具与被加工零件以及其它辅助装置严格按照加工工序规定的顺序﹑运动轨迹加工出符合要求的零件。

三坐标数控铣床的进给运动是数字控制的直接对象,不论点位控制还是连续控制,被加工工件的最后坐标精度和轮廓精度都受到进给运动的传动精度﹑灵敏度和稳定性的影响。为此,要注意以下三点进给运动要求:

(1) 减少运动件的摩擦力。进给系统虽有许多元件,但摩擦阻力主要来自丝杠和导轨。丝杠和导轨结构的滚动化是减少摩擦的重要措施之一。

(2) 提高传动精度和刚度。在进给系统中滚珠丝杠和支承结构是决定其传动精度和刚度的主要部件,因此,必须首先保证它们的加工精度。

(3) 减少运动惯量。进给系统中每个元件的惯量对伺服机构的启动和制动特性都有直接的影响。尤其是处于高速运转的零件,其惯性的影响更大。

设计是在原有普通铣床的基础上,对其进行改造,成为三坐标数控铣床。该机床能通过三轴联动,实现曲线直线等不同的加工路线。

所设计的三坐标数控铣床,三个坐标方向的移动均由步进电机带动,主轴电机采用交流电机,所有电机均由单片机进行控制。

此设计主要对数控铣床的机构进行设计,了解单片机的工作原理,主要有以下几个方面:X、Y、Z工作台的传动机构设计,主要是滚珠丝杠的运用;机床整体结构的设计,了解优缺点,充分考虑主要矛盾,择优选取;单片机控制系统的设计,进一步熟悉其应用。


第1章  概论

1.1  数控机床的产生及发展

随着社会生产和科学技术的发展,机械产品日趋精密复杂,且需频繁改型。特别是在宇航、造船、军事等领域所需的零件,精度要求高,形状复杂,批量小。普通机床已不能适应这些需求。为了满足上述要求,一种新型的机床——数字程序控制机床(简称数控机床)应运而生。

 最早进行数控机床研制的是美国人。1952年,美国麻省理工学院成功地研制出一套三坐标联动,利用脉冲乘法器原理的数控机床。但这台数控机床仅是一台试验性的机床,当时用的电子元件是电子管。直到1954年11月,第一台工业用的数控机床才生产出来。

从此以后,世界上其他一些工业国家也多开始开发、生产及应用数控机床。我国数控机床的研制是从1958年起步的。1965年国内开始研制晶体管数控系统。从70年代开始,数控技术广泛应用于车、铣、钻、镗、磨、齿轮加工、点加工等领域,数控加工中心在上海、北京研制成功。在这一时期,数控线切割机床由于结构简单,使用方便、价格低廉,在模具加工中得到了推广。80年代,我国从日本及美国、德国引进一些新技术。这使我国的数控机床在性能和质量上产生了一个质的飞跃。1985年,我国数控机床品种有了新的发展。

 早期的数控机床控制系统采用电子管,体积大、功耗高,只在军事部门应用。只有在微处理机用于数控机床后,才真正使数控机床得到了普及。目前数控技术的主要发展趋势是:实现高速度,搞可靠性,高精度,大功率,多功能;采用微处理机和微型计算机,向着增强功能、降低造价、方便使用的目标进展;积极应用计算技术、系统工程理论和控制技术的最新成果,像这综合自动化方向变革。


内容简介:
英 文 翻 译 INTRODUCTION TO MECHATRONICS 1: What Is Mechatronics? Michatronics is a term coined by the Japanese to describe the integration of mechanicaland electronics engineering. The concept may seem to be anything but new ,since we can alllook around us and see a myriad of products that utilize both mechanical and electronic dis- cipplines. Mechatronics,however ,specifically refers to a multidisciplined ,integrated approachto product and manufacturing system design .It represents the next generation of machines,robots ,and smart mechanisms necessary for carrying out work in a variety of environments-primarily ,factory automation ,office automation ,and home automation as show in Figure 1. By both implication and application ,mechatronics represents a new level of integration for advanced manufacturing technology and processes .The intent is to force a multidisciplinary approach to these syetems as well as to reemphasize the role of process understanding and control .This mechatronic approach is currently speeding up the already-rapid Japanese processfor trasforming ideas into products . Currently ,mechatronics describes the Japanese practice of useing fully intefrated teams of product designers ,manufactring, purchasing, and marketing personnel acting in concert witheach other to design both the product and the manufacturing syestem. The Japanese recognized that the future in producdtion innovation would belong to those who learned how to optimize the marriage beween eletronic and mechanical systems.They realized,inparticular ,that the need for this optimizatong would be most intense in application of advanced manufacturing and production systems where artificial intelligence ,expertsystems ,smart robots, and advanced manufacturing technology systems would create the next generation of tools to be used in the factory of the future. From the very beginnings of recorded time ,mechanical systems have found their way into everyaspect of our society .Our simplest mechanisms ,such as gears ,pulleys, springs,and wheeles.have provided the basis for our tools .Our electronics technology,on the other hand ,is completelytwentieth-century ,all of it created within the past 75 years. Until now ,electronics were included to enhance mechanical systems performance ,but the emphasis remained on the mechanical product .There had never been any master plan on how the integration would be done .In the past ,it had been done on a case -by-case basis .More recently,however,because of the overwhelming advances in the world of electronics and its capability to physically simplify mechanical configurations ,the technical community began to reassessthe marriage between these two disciplines. The most obvious trend in the direction of mechatronic innovation can be observed in the automobile industry .There was atime when a car was primarily a mechanical marvel with afew electronic appendages. First came the starter motor ,and then the generator ,each making the original product a bit better than it was before .Then came solid-state electronics,and suddenly the mechanical marvelbecame an electro-mechanical marvel .Todays machine is controlled by microprocessors ,built byrobots ,and fault-an-alyzed by a computer connected to its external interface connector.Automotive mechanical engineers are no longer the masters of their creations. The process that describes the evolution of the autimibile is somewhat typical of other productds in our society.Electronics has repeatedly improved the performance of mechanical systems ,but that innovation has been more by serendipity than by design .And that is the essenceof mechatronica the preplanned application of ,and the efficient integration of,mechanicaland electronics technology to create an optimum product. A recent U.S. Department of Commerce report entitled JTECH Panel Report on Mechatronics in Japancompared U.S and Japanese research and development trends in specific areas of mechatronics technology.Except for afew areas ,the technology necessary to accomplish the development ofthe next generation of systems embodying the principles of mechatronics is fully within the technological reach of the Japanede . Comparisons were made in three categories :basic research ,asvanced development, and productimplementation.Except for machine vision and software ,Japanese basic research was comparable to the United States,with the Japanese closing in fase on macchine vision system technology.Japanese artificial intelligence research is falling behind ,primarily because the Japanese donot consider it an essential ingredient of their future systems ,they appear capable of closing even that gap,if required .In the advanced development and product implementation areas,Japanis equal to or better than the United States,and is continuing to pull ahead at this time . The Department of Commerce report concleuded that Japan is maintaining itsposition and isin some cases gaining ground over the United States in the application of mechatronics .Theirprogress in mechatrinics is important because it addresses the very means for next generationof data -driven advanced design and manufacturing technology. In fact ,the Department of Commerce repert cincludes that this has created a regenrative effect on Japans manufacturing industries. TO clese the gap ,we will need to go much further than creating new tools .If we acceptthe fact that mechanical systems optimally coupled with eletronics components will be the waveof the future ,then we must also understand that the pipple effect will be felt all the way backto the university,where we now keep the two disciplines of mechanics and eletronics separated andallow them to meet only in occasional overview sessions .New curricula must be create fir a newhybrid engineer a mechatronics engineer .Only then can we be assured that future generations of product designers and manufactuiing engineers will full seek excellence in these new techniques. We need to rethink our present day approach of separating our engineering staffs both andfrom each other and from the producting engineers .Living together and communicating individualknowledge will be the key to optimum designs and new product development . The definition of mechatronics is much more significant than its combined words imply .It can physically turn engineering and manufacturing upside down. It will change the way we design and produce the next generating of high technology products.The nation that fully implements the rediments of mechatronics and vigorousely pursues it will lead the word to a new generation of technology innovation with all its profound implications.2.Benefits Of MechatronicsMechatronics may sound like utopia to many product and manufacturing managers it is often presented as the solution to nearly all of the problems in manufacturing . In particular ,it promises to increase productivity in the factory dramatically.Design changes are easy with extensive use of mechatronic elements such as CAD; CAP and MIS systems help in scheduling ; and flexible manufacturing systems ,computer-aided design ,and computer integrated manufacturing equipment cut turnaround time for manufacturing .These subsystems minimize production costs and greatlu increase equipment utilization .Connections from CAE,CAD, and CAM help create designs that are economical to manufacture ;cintrol and communications are improved,with minimal paper flow; and CAM equipment minimizes time loss due to setup and materials handling.Many companies that make extensive use of computers view their factories as examples of mechateonic concepes, but on close wxamination their integration is horizontal-in the manufacturing area only or at best includes primarily manufacturing and managemengt .General Electric ,as part of its effort to become a major bendor of factory automation systems ,including its Erie Locomotive Plant, its Scjenectady Steam Turbine Plant, and its Charlottesville Controls Manufacturing Division. The primary benefits of mechatronics, with an emphasis on advanced manufacturing technology and factory automation ,are summarized below.High Capitial Equipment Utilization Typically , the throughput for a set of machines in a mechatronics system will be up to three times that for the same machines in a stand-alone job shop environment . The mechatronic system achieves high efficiency by having the computer schedule every part to a machine as soon as it is free , simultaneously moving the part on the automated material handling system and downloading the appropriate computer program to the machine . In addition , the part arrives at a machine already fixtured on a pallet (this is done at a separate work station )so that the machine does not have to wait while the part is set up .Reduced Capital Equipment Costs The high utilization of eqipment results in the need for fewer machines in the mechatronic system to do the same work load as in a conventional systenm . Reductions of 3:1 are common when replaceing machining centers in a job-shop situation with a mechatronic system. Reduced Direct Labor Costs Since each machine is completely under computer control ,full-time oversight is not repaired . Direct labor can be reduced to the less skilled personnel who fixture and defixture the parts at the work station ,and a machinist to oversee or repair the work stations ,plus the system supervisor . While the fixturing personnel in mechatronic environments require less advanced skills than corresponding workers in conventional factories , labor cost reduction is somewhat offset by the need for computing and other skills which may not be required in traditional workplaces.Reduced Work-in Process Inventory and Lead TimeThe reduction of work in-process in a mechatronic system is quite dramatic when compared to a job-shop environment . Reductions of 80 percent have been reported at some installations and may be attributed to a variety of factors which reduce the time a part waits for metal-cutting operations. These factors include concentration of all the equipment required to produce part into a small area ;reduction in the number of fixtures required ;reduction in the number of machines a part must travel through because processes are combined in work cells ; and efficient computer scheduling of parts batched into and within the mechatronic system.Responsiveness to Changing Production Requirements A mechatronicsystem has the inherent flexibility to manufacture different products as the demands of the demands of the marketplace change or as engineering design changes are introduced .Furthermore , required spare part production can be mixed into regular runs without significantly disrupting the normal mechatronic system production activities.Abulity to Maintain Prodution Many mechatronic system are designed to degrade gracefully when one or more machines fail . This is accomplished by incorporating redundant machining capability and a material handling system that allows failed machines to be bypassed . Thus , throughput is maintained at a reduced rate.High Product Quality A sometimes-overlooked advantage of a mechatronic system , especially when compare to machines that have not been federated into a cooperative system , is improve product quality . The basic integration of product design characteristics with production capability ,the high level of automation , the reduction in the munber of fixtures , and greater attention to part/machine alignment all result in a good individual part quality and excellent consistency from one workpiece to another ,further resulting in greatly reduced costs of rework.Operational Flexibility Operational flexibility offers a significant increment of enhanced productivity . In some facilities , mechateonic system can run virtually unattended during the second and the third shifts . This nearly “unmanned “ mode of operation is currently the exception rather than the rule . It should , however, become increasingly common as better sensors and computer controls are developed to detect and handle unanticipated problems such as tool breakages and part-flow jams . In this operational mode , inspection ,fixturing , and maintenance can be performed during the first shift .Capacity Flexibility With correct planning for available floor space , a mechatronics system can be designed for low production volumes initially ;as demand increase , new machines can be added easily to provide the extra capacity required. Mechatronic System Elements This chapter provides a brief introduction to the mechatronic system concept and the system elements required to implement mechatronic technology . The stress is on factory automation ,whiche will serve as the foundation for mechatronic technology integration in office automation and home automation .System Concept Mechatronic production systems include all aspects of product design , manufacturing , and plant management , in a coordinated data-driven computer-as-sisted system .But unlike any other process before , they will also include the operationts that are the involed in defining the product a plant is to manufacture .It is precisely here that the Japanese have excelled ,making many American firms take notice and wonder why their share of the market is disappearing.A close inspection of the process would receal that the Japanese had created new products that were so much attuned to the using public that our statle products lacked luster in the market-place . They created a need for their products and did so by that age-old principle which states, “give the customer what he wants ,not what you think he wants .”Sharing the design process with customer is an interesting process that , when considered as part of the mechatronic philosophy , becomes the prime mover for everything else that happens in factory automation.There are three general groups of mechatronic functions , as shown in Figure 2: market needs analysis ,which results in user-oriented product design ; manufacture(both fabrication and assembly ) of products on the factory floor; and enlightened management of factory operations . The three general groups noted above ,stressing the need for inproved design , product manufacturing ,and enlightened management ,are not necessarily mutually exclusive . In fact , the goal of introducing mechatronics into these systems is to break down the barriers between them so that design and manufacturing system are inextricably linded . Howerer , the three categories are useful to frame the discussion , particularly since they correspond to the organization of a typical manufacturing firm. 汉语翻译 机电一体化概述1:何为机电一体化机电一体化是日本人新造的术语,用来描述机械工程与电子工程的结合。机电一体化的念除了是个新的概念之外,还可以看成包含任何东西的概念,因为我们周围有许许多多的数不清的产品都是机械和电子技术有机结合的产物。然而机电一体化特别指的是多学科相结合的产品设计和制造系统的方法,他代表着下一代的机器、机器人和灵敏的机械能够在一系列不同的环境下进行工作。主要是:工厂自动化、办公自动化、家庭自动化,如下图1所示同时应用机电一体化代表着一个新的层次上的先进生产技术和过程相结合。这就意味着把包含多种学科并且反复强调的方法应用于那些系统,这与把理解和控制放在一个重要的地位上是一样的。这种机械与电子技术相结合的方法使现今观念转变已经比较快的日本更快的把技术应用于产品之中。目前,机电一体化阐述了日本人使用充分结合的队伍的实践,这一队伍包括产品设计者、制造人员、采购人员和销售人员,他们相互一致行动,既设计产品又设计制造系统。日本人承认在生产革命中未来将属于知道怎样使用电子系统和机械系统之间相结合的最好的人们,更特别的是他们意识到这种需要是先进生产技术和制造系统的优化是最强烈的,譬如人工智能、专家系统、灵巧机器人。先进的制造系统能够创造下一代将来能够在工厂应用的工具。迄今为止,机械系统已经在我们社会各方面广泛应用且存在,例如我们的一些简单机械齿轮、弹簧、轮子都是我们日常生活的基本工具。在另一方面我们的电子技术在20 世纪已经在短短的75年内就已经相当的发达了。直到现在,电子技术从属于机械系统,并来增强机械系统的性能。但是重点仍然放在机械产品的生产上,从没有把机械和电子相互结合。在过去,只是就事论事,最近由于世界上电子技术的不可抵挡的先进性,且能够实际的简化机械装置。机械技术行业开始将电子技术与机械“联姻”。最直接的机电一体化改革体现在自动化工业。我们进入了一个崭新的时代,一辆汽车是只有几个电子元件就能控制的机器。首先是起动器马达,接着出现的是发电机。每一次都使产品有了新的进步,之后半导体电子元件(由集成块、晶体管和二极管组成)的出现成为机械行业的奇迹。现今的机器是由微处理器控制,由机器人生产,故障分析由与外接口连接器连接的电脑控制,自动化机器引擎。电子技术已再三的改善了机械系统的性能。这是机电一体化的精华机械技术和电子技术预先计划应用和有效结合以创造一种最佳的产品。美国贸易部最近的一篇题为“日本技术规则委员会关于机电一体化评论”的报告比较了美国和日本在机电一体化技术上的研究和发展。除了少数领域外,完成使机电一体化的原理具体化的下一代系统的研制所必须的技术完全在日本人所能及的范围内。在下列三个方面作了比较:基础研究、试样样品和产品实现三个方面。除了机械视觉系统和软件系统外,日本的基础研究与美国的是可以相比的,日本人在机器视觉系统(系统通过传感、物体识别、图象分析和解释来确定物体的方位和形状的能力,称为机械视觉系统)日本人工智能方面的研究比美国相对落后,主要是日本人不认为人工智能是与他们将来系统结合的关键。如果需要的话,他们甚至关闭且不研究人工智能。在试样试品和产品实现方面,日本与美国持平,甚至超过美国,并在一段时间内仍保持领先势头。美国贸易部的报告总结出:日本仍然保持其地位,在一些情况下,对于机电一体化的应用仍胜于美国。他们在机电一体化方面的进步是非常重要的,因为它是下一代以数据为主导的设计及制造技术的重要手段。实际上,美国贸易部报告的结论会对日本的工业生产产生更深远的影响。为了缩小差距,我们不仅要制造新的工具,而且我们要走的路更远。如果我们接受电子元件最佳结合的机械系统将是未来的浪潮。这一事实,那么我们一定能理解。这波纹效应一直到大学都能感觉到。在大学里我们把机械学和电子学这两门学科分离,而且仅在偶然的综合性课程中允许二者相遇。现在的课程必须能够创造新的混合型的工程师机电一体化工程师。只有这样,我们才能保证将来下一代的产品设计者和制造工程师将在新的技术领域有出色的表现。我们必须需要重新思考一下我们现代的划分我们机电一体化工程师成员的方法,既要彼此互相区别,而又要与产品工程师相互区别。居住在一起,个人之间相互交流在产品将产生一种复杂的效应。最大化的相互作用是优化设计和新产品开发的关键。机电一体化的定义的重要性不在于它是词语的简单组合,他把工程技术和制造技术相互结合,他会改变我们设计和生产下一代高科技产品的方式,充分为机电一体化提供基础,并强有利的推行机电一体化的国家将把世界导向一场具有深远意义的新一代技术革命。 2:机电一体化的优势 机电一体化对于许多产品和制造者听起来似乎是近乎理想的完美境界,因为机电一体化几乎能解决生产制造中的所有问题,更特别的是,他很有可能显著的提高工厂产品的产量。广泛的利用机电一体化组成部分例如CAD(计算机辅助设计)、CAP(计算机辅助计划)和MIS(管理信息系统)帮助的编制进度。并且柔性制造系统、计算机辅助设计、计算机集成制造设备,可以大大的降低生产制造的工作周期,这子系统降低产品成本和提高设备的利用率,与CAE(计算机辅助工程)、CAD、CAM(计算机辅助制造)相结合的机电一体化能创造更经济的产品,利用控制和联络的提高,降低图纸数量,并且CAM设备减少了安装和控制机器的时间。许多公司更广泛的利用计算机把他们的工厂看成是机电一体化构想的试样点。但是,经过严密考察后,他们的结合是水平的只在生产领域包括主要的生产制造和管理阶层。通用电器公司成为工厂汽车系统的主要卖主,已经推出其宏伟计划合并其旗下的数个公司,包括伊利机车厂、斯克奈塔气轮机厂、夏洛茨维尔制造分工司。机电一体化的主要优势着重放在先
温馨提示:
1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
2: 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
3.本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
提示  人人文库网所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
关于本文
本文标题:三坐标数控铣床设计【6张CAD图纸和说明书】
链接地址:https://www.renrendoc.com/p-15203437.html

官方联系方式

2:不支持迅雷下载,请使用浏览器下载   
3:不支持QQ浏览器下载,请用其他浏览器   
4:下载后的文档和图纸-无水印   
5:文档经过压缩,下载后原文更清晰   
关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

网站客服QQ:2881952447     

copyright@ 2020-2025  renrendoc.com 人人文库版权所有   联系电话:400-852-1180

备案号:蜀ICP备2022000484号-2       经营许可证: 川B2-20220663       公网安备川公网安备: 51019002004831号

本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知人人文库网,我们立即给予删除!