崇仁县高级中学2018-2019学年上学期高二数学12月月考试题含解析_第1页
崇仁县高级中学2018-2019学年上学期高二数学12月月考试题含解析_第2页
崇仁县高级中学2018-2019学年上学期高二数学12月月考试题含解析_第3页
崇仁县高级中学2018-2019学年上学期高二数学12月月考试题含解析_第4页
崇仁县高级中学2018-2019学年上学期高二数学12月月考试题含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

崇仁县高级中学2018-2019学年上学期高二数学12月月考试题含解析班级_ 座号_ 姓名_ 分数_一、选择题1 已知i是虚数单位,则复数等于( )A +iB +iCiDi2 若P是以F1,F2为焦点的椭圆=1(ab0)上的一点,且=0,tanPF1F2=,则此椭圆的离心率为( )ABCD 3 设Sn为等比数列an的前n项和,若a1=1,公比q=2,Sk+2Sk=48,则k等于( )A7B6C5D44 函数的定义域是( )A0,+) B1,+) C(0,+) D(1,+)5 在区间上恒正,则的取值范围为( )A B C D以上都不对6 已知双曲线:(,),以双曲线的一个顶点为圆心,为半径的圆被双曲线截得劣弧长为,则双曲线的离心率为( )A B C D7 点A是椭圆上一点,F1、F2分别是椭圆的左、右焦点,I是AF1F2的内心若,则该椭圆的离心率为( )ABCD8 已知某市两次数学测试的成绩1和2分别服从正态分布1:N1(90,86)和2:N2(93,79),则以下结论正确的是( )A第一次测试的平均分比第二次测试的平均分要高,也比第二次成绩稳定B第一次测试的平均分比第二次测试的平均分要高,但不如第二次成绩稳定C第二次测试的平均分比第一次测试的平均分要高,也比第一次成绩稳定D第二次测试的平均分比第一次测试的平均分要高,但不如第一次成绩稳定9 已知三棱锥ABCO,OA、OB、OC两两垂直且长度均为6,长为2的线段MN的一个端点M在棱OA上运动,另一个端点N在BCO内运动(含边界),则MN的中点P的轨迹与三棱锥的面所围成的几何体的体积为()AB或36+C36D或3610某人以15万元买了一辆汽车,此汽车将以每年20%的速度折旧,如图是描述汽车价值变化的算法流程图,则当n=4吋,最后输出的S的值为( )A9.6B7.68C6.144D4.915211的内角,所对的边分别为,已知,则( )111A B或 C或 D12已知平面向量,若与垂直,则实数值为( )A B C D【命题意图】本题考查平面向量数量积的坐标表示等基础知识,意在考查基本运算能力二、填空题13已知、分别是三内角的对应的三边,若,则的取值范围是_【命题意图】本题考查正弦定理、三角函数的性质,意在考查三角变换能力、逻辑思维能力、运算求解能力、转化思想14已知圆的方程为,过点的直线与圆交于两点,若使最小则直线的方程是 15双曲线x2my2=1(m0)的实轴长是虚轴长的2倍,则m的值为16小明想利用树影测量他家有房子旁的一棵树的高度,但由于地形的原因,树的影子总有一部分落在墙上,某时刻他测得树留在地面部分的影子长为1.4米,留在墙部分的影高为1.2米,同时,他又测得院子中一个直径为1.2米的石球的影子长(球与地面的接触点和地面上阴影边缘的最大距离)为0.8米,根据以上信息,可求得这棵树的高度是米(太阳光线可看作为平行光线) 17若非零向量,满足|+|=|,则与所成角的大小为18已知,为实数,代数式的最小值是 .【命题意图】本题考查两点之间距离公式的运用基础知识,意在考查构造的数学思想与运算求解能力.三、解答题19已知函数f(x)=a,(1)若a=1,求f(0)的值;(2)探究f(x)的单调性,并证明你的结论;(3)若函数f(x)为奇函数,判断|f(ax)|与f(2)的大小20已知函数f(x)=2cosx(sinx+cosx)1()求f(x)在区间0,上的最大值;()在ABC中,内角A,B,C的对边分别为a,b,c,且f(B)=1,a+c=2,求b的取值范围21已知椭圆C的中心在坐标原点O,长轴在x轴上,离心率为,且椭圆C上一点到两个焦点的距离之和为4()椭圆C的标准方程()已知P、Q是椭圆C上的两点,若OPOQ,求证:为定值()当为()所求定值时,试探究OPOQ是否成立?并说明理由 22(本小题满分12分)如图(1),在三角形中,为其中位线,且,若沿将三角形折起,使,构成四棱锥,且.(1)求证:平面 平面;(2)当 异面直线与所成的角为时,求折起的角度.23(本小题满分16分) 给出定义在上的两个函数,. (1)若在处取最值求的值; (2)若函数在区间上单调递减,求实数的取值范围; (3)试确定函数的零点个数,并说明理由24已知函数f(x)=xlnx+ax(aR)()若a=2,求函数f(x)的单调区间;()若对任意x(1,+),f(x)k(x1)+axx恒成立,求正整数k的值(参考数据:ln2=0.6931,ln3=1.0986) 崇仁县高级中学2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1 【答案】A【解析】解:复数=,故选:A【点评】本题考查了复数的运算法则,属于基础题2 【答案】A【解析】解:,即PF1F2是P为直角顶点的直角三角形RtPF1F2中,=,设PF2=t,则PF1=2t=2c,又根据椭圆的定义,得2a=PF1+PF2=3t此椭圆的离心率为e=故选A【点评】本题给出椭圆的一个焦点三角形为直角三角形,根据一个内角的正切值,求椭圆的离心率,着重考查了椭圆的基本概念和简单几何性质,属于基础题3 【答案】D【解析】解:由题意,Sk+2Sk=,即32k=48,2k=16,k=4故选:D【点评】本题考查等比数列的通项公式,考查了等比数列的前n项和,是基础题4 【答案】A【解析】解:由题意得:2x10,即2x1=20,因为21,所以指数函数y=2x为增函数,则x0所以函数的定义域为0,+)故选A【点评】本题为一道基础题,要求学生会根据二次根式的定义及指数函数的增减性求函数的定义域5 【答案】C【解析】试题分析:由题意得,根据一次函数的单调性可知,函数在区间上恒正,则,即,解得,故选C.考点:函数的单调性的应用.6 【答案】B 考点:双曲线的性质7 【答案】B【解析】解:设AF1F2的内切圆半径为r,则SIAF1=|AF1|r,SIAF2=|AF2|r,SIF1F2=|F1F2|r,|AF1|r=2|F1F2|r|AF2|r,整理,得|AF1|+|AF2|=2|F1F2|a=2,椭圆的离心率e=故选:B8 【答案】C【解析】解:某市两次数学测试的成绩1和2分别服从正态分布1:N1(90,86)和2:N2(93,79),1=90,1=86,2=93,2=79,第二次测试的平均分比第一次测试的平均分要高,也比第一次成绩稳定,故选:C【点评】本题考查正态分布曲线的特点,考查学生分析解决问题的能力,比较基础9 【答案】D【解析】【分析】由于长为2的线段MN的一个端点M在棱OA上运动,另一个端点N在BCO内运动(含边界),有空间想象能力可知MN的中点P的轨迹为以O为球心,以1为半径的球体,故MN的中点P的轨迹与三棱锥的面所围成的几何体的体积,利用体积分割及球体的体积公式即可【解答】解:因为长为2的线段MN的一个端点M在棱OA上运动,另一个端点N在BCO内运动(含边界), 有空间想象能力可知MN的中点P的轨迹为以O为球心,以1为半径的球体,则MN的中点P的轨迹与三棱锥的面所围成的几何体可能为该球体的或该三棱锥减去此球体的,即:或故选D10【答案】C【解析】解:由题意可知,设汽车x年后的价值为S,则S=15(120%)x,结合程序框图易得当n=4时,S=15(120%)4=6.144故选:C11【答案】B【解析】试题分析:由正弦定理可得: 或,故选B.考点:1、正弦定理的应用;2、特殊角的三角函数.12【答案】A二、填空题13【答案】 【解析】14【答案】【解析】试题分析:由圆的方程为,表示圆心在,半径为的圆,点到圆心的距离等于,小于圆的半径,所以点在圆内,所以当时,最小,此时,由点斜式方程可得,直线的方程为,即.考点:直线与圆的位置关系的应用.15【答案】4 【解析】解:双曲线x2my2=1化为x2=1,a2=1,b2=,实轴长是虚轴长的2倍,2a=22b,化为a2=4b2,即1=,解得m=4故答案为:4【点评】熟练掌握双曲线的标准方程及实轴、虚轴的定义是解题的关键16【答案】3.3 【解析】解:如图BC为竿的高度,ED为墙上的影子,BE为地面上的影子设BC=x,则根据题意=,AB=x,在AE=ABBE=x1.4,则=,即=,求得x=3.3(米)故树的高度为3.3米,故答案为:3.3【点评】本题主要考查了解三角形的实际应用解题的关键是建立数学模型,把实际问题转化为数学问题17【答案】90 【解析】解:=与所成角的大小为90故答案为90【点评】本题用向量模的平方等于向量的平方来去掉绝对值18【答案】. 【解析】三、解答题19【答案】 【解析】解:(1)a=1时:f(0)=1=;(2)f(x)的定义域为R任取x1x2R且x1x2则f(x1)f(x2)=aa+=y=2x在R是单调递增且x1x202x12x2,2x12x20,2x1+10,2x2+10,f(x1)f(x2)0即f(x1)f(x2),f(x)在R上单调递增(3)f(x)是奇函数f(x)=f(x),即a=a+,解得:a=1f(ax)=f(x)又f(x)在R上单调递增x2或x2时:|f(x)|f(2),x=2时:|f(x)|=f(2),2x2时:|f(x)|f(2)【点评】本题考查的是函数单调性、奇偶性等知识的综合问题在解答的过程当中充分体现了计算的能力、单调性定义的应用以及问题转化的能力值得同学们体会和反思20【答案】 【解析】(本题满分为12分)解:()f(x)=2cosx(sinx+cosx)1=2sinxcosx+2cos2x1=sin2x+21=sin2x+cos2x=sin(2x+),x0,2x+,当2x+=,即x=时,f(x)min=6分()由()可知f(B)=sin(+)=1,sin(+)=,+=,B=,由正弦定理可得:b=1,2)12分【点评】本题主要考查了三角函数恒等变换的应用,正弦函数的图象和性质,正弦定理在解三角形中的综合应用,考查了计算能力和转化思想,属于中档题21【答案】 【解析】(I)解:由题意可设椭圆的坐标方程为(ab0)离心率为,且椭圆C上一点到两个焦点的距离之和为4,2a=4,解得a=2,c=1b2=a2c2=3椭圆C的标准方程为(II)证明:当OP与OQ的斜率都存在时,设直线OP的方程为y=kx(k0),则直线OQ的方程为y=x(k0),P(x,y)联立,化为,|OP|2=x2+y2=,同理可得|OQ|2=,=+=为定值当直线OP或OQ的斜率一个为0而另一个不存在时,上式也成立因此=为定值(III)当=定值时,试探究OPOQ是否成立?并说明理由OPOQ不一定成立下面给出证明证明:当直线OP或OQ的斜率一个为0而另一个不存在时,则=,满足条件当直线OP或OQ的斜率都存在时,设直线OP的方程为y=kx(k0),则直线OQ的方程为y=kx(kk,k0),P(x,y)联立,化为,|OP|2=x2+y2=,同理可得|OQ|2=,=+=化为(kk)2=1,kk=1OPOQ或kk=1因此OPOQ不一定成立【点评】本题考查了椭圆的标准方程及其性质、直线与椭圆相交问题转化为方程联立可得交点坐标、相互垂直的直线斜率之间的关系,考查了分析问题与解决问题的能力,考查了推理能力与计算能力,属于难题22【答案】(1)证明见解析;(2)【解析】试题分析:(1)可先证,从而得到平面,再证,可得平面,由,可证明平面平面;(2)由,取的中点,连接,可得即为异面直线与所成的角或其补角,即为所折起的角度.在三角形中求角即可. 1试题解析:(2)因为,取的中点,连接,所以,又,所以,从而四边形为平行四边形,所以,得;同时,因为,所以,故折起的角度.考点:点、线、面之间的位置关系的判定与性质23【答案】(1) (2) (3)两个零点【解析】试题分析:(1) 开区间的最值在极值点取得,因此在处取极值,即 ,解得 ,需验证(2) 在区间上单调递减,转化为在区间上恒成立,再利用变量分离转化为对应函数最值:的最大值,根据分式函数求最值方法求得最大值2(3)先利用导数研究函数单调性:当时,递减,当时,递增;再考虑区间端点函数值的符号:, , ,结合零点存在定理可得零点个数试题解析:(1) 由已知,即: ,解得: 经检验 满足题意所以 4分因为,所以,所以所以,所以 10分(3)函数有两个零点因为所以 12分当时,当时,所以, 14分 , 故由零点存在定理可知: 函数在 存在一个零点,函数在 存在一个零点,所以函数有两个零点 16分考点:函数极值与最值,利用导数研究函数零点,利用导数研究函数单调性【思路点睛】对于方程解的个数(或函数零点个数)问题,可利用函数的值域或最值,结合函数的单调性、草图确定其中参数范围从图象的最高点、最低点,分析函数的最值、极值;从图象的对称性,分析函数的奇偶性;从图象的走向趋势,分析函数的单调性、周期性等24【答案】 【解析】解:(I)a=2时,f(x)=xlnx2x,则f(x)=lnx1令f(x)=0得x=e,当0xe时,f(x)0,当xe时,f(x)0,f(x)的单调递减区间是(0,e),单调递增区间为(e,+)(II)若对任意x(1,+),f(x)k(x1)+axx恒成立,则xlnx+axk(x1)+axx恒成立,即k(x1)xlnx+axax+x恒成立,又x10,则k对任意x(1,+)恒成立,设h(x)=,则h(x)=设m(x)=xlnx2,则m(x)=1,x(1,+),m(x)0,则m(x)在(1,+)上是

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论